首页 > 最新文献

Functional Materials Letters最新文献

英文 中文
Efficient degradation of ciprofloxacin by waste eggshells derived ES/CuS heterostructure under visible light 废蛋壳衍生 ES/CuS 异质结构在可见光下高效降解环丙沙星
IF 1.3 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-03-26 DOI: 10.1142/s1793604724510196
Guanghong Zhao, Yuan Wei, Yubing Liu, Chao Liu, Hongyu Wang, Xin Li, Ronghui Liu, Yanyan Jiang, Yulan Zhang, Yuhui Gao, Gaofeng Shi, Guoying Wang

The transformation of discarded eggshells (ES) into high value-added materials through technological means and the realization of turning waste ES “stone into gold” are of great significance to the environment and sustainable economic development. CuS is a typical semiconductor with broad and powerful light absorption properties, which is widely used in photocatalytic wastewater remediation. However, the high recombination rate of CuS photogenerated electron-hole pairs limits its application. In this study, a novel waste eggshell-derived ES/CuS heterojunction photocatalyst is innovatively constructed using an adsorption-precipitation method to realize the efficient degradation of ciprofloxacin (CIP) under visible light. The results showed that the ES/CuS heterojunction photocatalyst, under visible light irradiation, could degrade CIP (20 mg/L) with a degradation efficiency of 93.7% at 5 h (including 1 h of dark reaction), which compared to the degradation efficiency of CuS (52.3%) its CIP removal was significantly increased by a factor of 1.78, and showed good stability and reusability. The superior CIP degradation performance is mainly attributed to the introduction of ES to improve the separation efficiency of CuS photogenerated carriers and can participate in redox reactions through the formation of e and h+ on the surface of heterojunctions under visible light irradiation, which generation of oxidizing powerful .O2 radicals which can also directly oxidize CIP. This work provides a new perspective on the reuse of waste ES and the design of CuS catalysts.

通过科技手段将废弃蛋壳(ES)转化为高附加值材料,实现废弃蛋壳 "点石成金",对环境和经济可持续发展具有重要意义。CuS 是一种典型的半导体,具有广泛而强大的光吸收特性,被广泛应用于光催化废水处理。然而,CuS 光生电子-空穴对的高重组率限制了其应用。本研究采用吸附沉淀法创新性地构建了一种新型废蛋壳衍生ES/CuS异质结光催化剂,实现了环丙沙星(CIP)在可见光下的高效降解。结果表明,ES/CuS异质结光催化剂在可见光照射下,5 h(包括1 h暗反应)降解CIP(20 mg/L)的效率为93.7%,与CuS的降解效率(52.3%)相比,其CIP去除率显著提高了1.78倍,并表现出良好的稳定性和可重复使用性。卓越的 CIP 降解性能主要归功于 ES 的引入,ES 提高了 CuS 光生载流子的分离效率,并能在可见光照射下通过在异质结表面形成 e- 和 h+ 参与氧化还原反应,从而产生氧化性强的 .O2- 自由基,这些自由基也能直接氧化 CIP。这项工作为废 ES 的再利用和 CuS 催化剂的设计提供了一个新的视角。
{"title":"Efficient degradation of ciprofloxacin by waste eggshells derived ES/CuS heterostructure under visible light","authors":"Guanghong Zhao, Yuan Wei, Yubing Liu, Chao Liu, Hongyu Wang, Xin Li, Ronghui Liu, Yanyan Jiang, Yulan Zhang, Yuhui Gao, Gaofeng Shi, Guoying Wang","doi":"10.1142/s1793604724510196","DOIUrl":"https://doi.org/10.1142/s1793604724510196","url":null,"abstract":"<p>The transformation of discarded eggshells (ES) into high value-added materials through technological means and the realization of turning waste ES “stone into gold” are of great significance to the environment and sustainable economic development. CuS is a typical semiconductor with broad and powerful light absorption properties, which is widely used in photocatalytic wastewater remediation. However, the high recombination rate of CuS photogenerated electron-hole pairs limits its application. In this study, a novel waste eggshell-derived ES/CuS heterojunction photocatalyst is innovatively constructed using an adsorption-precipitation method to realize the efficient degradation of ciprofloxacin (CIP) under visible light. The results showed that the ES/CuS heterojunction photocatalyst, under visible light irradiation, could degrade CIP (20 mg/L) with a degradation efficiency of 93.7% at 5 h (including 1 h of dark reaction), which compared to the degradation efficiency of CuS (52.3%) its CIP removal was significantly increased by a factor of 1.78, and showed good stability and reusability. The superior CIP degradation performance is mainly attributed to the introduction of ES to improve the separation efficiency of CuS photogenerated carriers and can participate in redox reactions through the formation of e<span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mo stretchy=\"false\">−</mo></mrow></msup></math></span><span></span> and h<span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mo stretchy=\"false\">+</mo></mrow></msup></math></span><span></span> on the surface of heterojunctions under visible light irradiation, which generation of oxidizing powerful .O<sub>2</sub><span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mo stretchy=\"false\">−</mo></mrow></msup></math></span><span></span> radicals which can also directly oxidize CIP. This work provides a new perspective on the reuse of waste ES and the design of CuS catalysts.</p>","PeriodicalId":12701,"journal":{"name":"Functional Materials Letters","volume":"42 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140324990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of 2D CuxAl(100−x) electrodes on the CuxAl(100−x)/Cu21(SiO2)79/W memristive device 二维 CuxAl(100-x)电极对 CuxAl(100-x)/Cu21(SiO2)79/W 记忆器件的影响
IF 1.3 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-03-12 DOI: 10.1142/s1793604724510184
Bin Gu, Guangyu Wen, Bo Zhang, Jhonatan Rodriguez-Pereira, Tomas Wagner
<p>In recent years, 2D metal nanomaterials have emerged as a novel class of 2D materials owing to their unique physiochemical properties. In this paper, memristive devices (Cu<span><math altimg="eq-00009.gif" display="inline" overflow="scroll"><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span><span></span>Al<span><math altimg="eq-00010.gif" display="inline" overflow="scroll"><msub><mrow></mrow><mrow><mo stretchy="false">(</mo><mn>1</mn><mn>0</mn><mn>0</mn><mo stretchy="false">−</mo></mrow></msub></math></span><span></span><span><math altimg="eq-00011.gif" display="inline" overflow="scroll"><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span><span></span><span><math altimg="eq-00012.gif" display="inline" overflow="scroll"><msub><mrow></mrow><mrow><mo stretchy="false">)</mo></mrow></msub></math></span><span></span>(BE)/Cu <span><math altimg="eq-00013.gif" display="inline" overflow="scroll"><msub><mrow></mrow><mrow><mn>2</mn><mn>1</mn></mrow></msub></math></span><span></span>(SiO<sub>2</sub>)<span><math altimg="eq-00014.gif" display="inline" overflow="scroll"><msub><mrow></mrow><mrow><mn>7</mn><mn>9</mn></mrow></msub></math></span><span></span>/W(TE)) were fabricated utilizing 2D Cu<span><math altimg="eq-00015.gif" display="inline" overflow="scroll"><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span><span></span>Al <span><math altimg="eq-00016.gif" display="inline" overflow="scroll"><msub><mrow></mrow><mrow><mo stretchy="false">(</mo><mn>1</mn><mn>0</mn><mn>0</mn><mo stretchy="false">−</mo></mrow></msub></math></span><span></span><span><math altimg="eq-00017.gif" display="inline" overflow="scroll"><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span><span></span><span><math altimg="eq-00018.gif" display="inline" overflow="scroll"><msub><mrow></mrow><mrow><mo stretchy="false">)</mo></mrow></msub></math></span><span></span> materials with different compositions as electrodes. After exfoliation by sonication, the minimum thickness of the freestanding single layer of 2D Cu<span><math altimg="eq-00019.gif" display="inline" overflow="scroll"><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span><span></span> Al<span><math altimg="eq-00020.gif" display="inline" overflow="scroll"><msub><mrow></mrow><mrow><mo stretchy="false">(</mo><mn>1</mn><mn>0</mn><mn>0</mn><mo stretchy="false">−</mo></mrow></msub></math></span><span></span><span><math altimg="eq-00021.gif" display="inline" overflow="scroll"><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span><span></span><span><math altimg="eq-00022.gif" display="inline" overflow="scroll"><msub><mrow></mrow><mrow><mo stretchy="false">)</mo></mrow></msub></math></span><span></span>was only 1.5 nm. Furthermore, the distribution of SET thresholds was determined by the composition of the 2D Cu<span><math altimg="eq-00023.gif" display="inline" overflow="scroll"><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span><span></span>Al<span><math altimg="eq
近年来,二维金属纳米材料因其独特的物理化学特性而成为一类新型的二维材料。本文利用不同成分的二维 CuxAl (100-x) 材料作为电极,制备了记忆性器件(CuxAl(100-x)(BE)/Cu 21(SiO2)79/W(TE))。经超声剥离后,二维 Cux Al(100-x)独立单层的最小厚度仅为 1.5 nm。此外,二维 CuxAl(100-x)材料的成分决定了 SET 门限的分布。结果表明,SET 和 RESET 阈值可根据二维 CuxAl(100-x)材料的成分进行调整。二维金属作为电极在微型记忆器件中的应用前景广阔。
{"title":"Influence of 2D CuxAl(100−x) electrodes on the CuxAl(100−x)/Cu21(SiO2)79/W memristive device","authors":"Bin Gu, Guangyu Wen, Bo Zhang, Jhonatan Rodriguez-Pereira, Tomas Wagner","doi":"10.1142/s1793604724510184","DOIUrl":"https://doi.org/10.1142/s1793604724510184","url":null,"abstract":"&lt;p&gt;In recent years, 2D metal nanomaterials have emerged as a novel class of 2D materials owing to their unique physiochemical properties. In this paper, memristive devices (Cu&lt;span&gt;&lt;math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;Al&lt;span&gt;&lt;math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;&lt;span&gt;&lt;math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;&lt;span&gt;&lt;math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;(BE)/Cu &lt;span&gt;&lt;math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;(SiO&lt;sub&gt;2&lt;/sub&gt;)&lt;span&gt;&lt;math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;7&lt;/mn&gt;&lt;mn&gt;9&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;/W(TE)) were fabricated utilizing 2D Cu&lt;span&gt;&lt;math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;Al &lt;span&gt;&lt;math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;&lt;span&gt;&lt;math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;&lt;span&gt;&lt;math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; materials with different compositions as electrodes. After exfoliation by sonication, the minimum thickness of the freestanding single layer of 2D Cu&lt;span&gt;&lt;math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; Al&lt;span&gt;&lt;math altimg=\"eq-00020.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;&lt;span&gt;&lt;math altimg=\"eq-00021.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;&lt;span&gt;&lt;math altimg=\"eq-00022.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;was only 1.5 nm. Furthermore, the distribution of SET thresholds was determined by the composition of the 2D Cu&lt;span&gt;&lt;math altimg=\"eq-00023.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;Al&lt;span&gt;&lt;math altimg=\"eq","PeriodicalId":12701,"journal":{"name":"Functional Materials Letters","volume":"47 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140153094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electronic properties of individual CsPbI2Br nanocrystals investigated by LT-STM 利用 LT-STM 研究单个 CsPbI2Br 纳米晶体的电子特性
IF 1.3 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-03-12 DOI: 10.1142/s1793604724500103
Jianmin Li, Han Zhao, Kang Ma, Yikai Fu, Haitao Dai, Zhixiang Sun, Hong-Ying Gao

Solution-processed metal halide perovskite nanocrystals show promise for various potential optoelectronic applications and the exploration of the fundamental physics underlying them. However, the electronic properties of individual nanocrystals have not been thoroughly studied. Here, we applied low-temperature scanning tunneling microscopy to investigate the properties of metal halide perovskite CsPbI2Br nanocrystals with a diameter in the range of 10–20 nm. Sub-monolayer dispersions of the nanocrystal on highly oriented pyrolytic graphite and gold thin film substrates were achieved. Using scanning tunneling microscopy, we resolved topographies of individual nanocrystals on the gold film, and their electronic properties were probed by scanning tunneling spectroscopy. In our experiment, no obvious dependence of the extracted energy gap on the nanocrystal size and shape was found, which is consistent with the reported small exciton Bohr radius in metal halide perovskite materials. Additionally, we observed that the energy gaps of some nanocrystals are smaller than that of the bulk, suggesting the influence of factors such as deep-level defects/traps, ion migration, etc. on the electronic structure.

溶液加工的金属卤化物过氧化物纳米晶体在各种潜在的光电应用和探索其基础物理学方面展现出广阔的前景。然而,人们尚未对单个纳米晶体的电子特性进行深入研究。在此,我们应用低温扫描隧道显微镜研究了直径在 10-20 纳米范围内的金属卤化物包晶 CsPbI2Br 纳米晶体的特性。在高取向热解石墨和金薄膜基底上实现了纳米晶体的亚单层分散。我们利用扫描隧道显微镜解析了金薄膜上单个纳米晶体的形貌,并通过扫描隧道光谱探测了它们的电子特性。在我们的实验中,没有发现提取能隙与纳米晶体的大小和形状有明显的关系,这与所报道的金属卤化物过氧化物材料中激子玻尔半径较小的情况一致。此外,我们还观察到一些纳米晶体的能隙小于块体的能隙,这表明深层缺陷/陷阱、离子迁移等因素对电子结构有影响。
{"title":"Electronic properties of individual CsPbI2Br nanocrystals investigated by LT-STM","authors":"Jianmin Li, Han Zhao, Kang Ma, Yikai Fu, Haitao Dai, Zhixiang Sun, Hong-Ying Gao","doi":"10.1142/s1793604724500103","DOIUrl":"https://doi.org/10.1142/s1793604724500103","url":null,"abstract":"<p>Solution-processed metal halide perovskite nanocrystals show promise for various potential optoelectronic applications and the exploration of the fundamental physics underlying them. However, the electronic properties of individual nanocrystals have not been thoroughly studied. Here, we applied low-temperature scanning tunneling microscopy to investigate the properties of metal halide perovskite CsPbI<sub>2</sub>Br nanocrystals with a diameter in the range of 10–20 nm. Sub-monolayer dispersions of the nanocrystal on highly oriented pyrolytic graphite and gold thin film substrates were achieved. Using scanning tunneling microscopy, we resolved topographies of individual nanocrystals on the gold film, and their electronic properties were probed by scanning tunneling spectroscopy. In our experiment, no obvious dependence of the extracted energy gap on the nanocrystal size and shape was found, which is consistent with the reported small exciton Bohr radius in metal halide perovskite materials. Additionally, we observed that the energy gaps of some nanocrystals are smaller than that of the bulk, suggesting the influence of factors such as deep-level defects/traps, ion migration, etc. on the electronic structure.</p>","PeriodicalId":12701,"journal":{"name":"Functional Materials Letters","volume":"142 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140153152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and photoluminescence study of rare-earth-free red emitting La3Ga5SiO14:Mn4+phosphors 无稀土红色发光 La3Ga5SiO14:Mn4+ 磷酸盐的制备与光致发光研究
IF 1.3 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-24 DOI: 10.1142/s1793604724500097
Youxin Lou, Yuguo Yang, Zi Yang, Chaofeng Zhu, Haifeng Zhou, Ping Zhao, Xuping Wang

Given the growing interest in eco-friendly lighting solutions, the use of high-quality phosphors has become integral to the advancement of all-solid white light-emitting diodes (WLEDs). One novel phosphor, La3Ga5SiO14:Mn4+ (LGS), has been successfully synthesized via a high-temperature solid-state reaction. The crystal structure of LGS is classified as belonging to the trigonal phase, with a space group P321. The excitation spectrum exhibits a wide peak within the wavelength range of 280–440 nm. It emits a highly intense red light, with a peak emission occurring at 715 nm within the spectral range of 670–740 nm is attributed to the transition of Mn4+ from 4A2g to 4T2g. LGS:Mn4+ demonstrates a favorable quantum efficiency of 16% when doped with a concentration of 0.25 mol% Mn. The decay curve of LGS:Mn4+ exhibits a pattern of decreasing lifetime as the dopant concentration increases. Additionally, the LGS:Mn4+ products demonstrate a CIE chromaticity of (0.688, 0.2644), which is located within the deep red light region. All the aforementioned findings support the potential application of LGS:Mn4+ specimens in WLEDs, thereby contributing to the progress of environmentally friendly and energy-efficient lighting.

鉴于人们对环保照明解决方案的兴趣与日俱增,使用高质量的荧光粉已成为全固态白光发光二极管(WLED)发展不可或缺的一部分。一种新型荧光粉 La3Ga5SiO14:Mn4+ (LGS) 已通过高温固态反应成功合成。LGS 的晶体结构属于三方相,空间群为 P321。其激发光谱在 280-440 nm 波长范围内呈现出一个较宽的峰值。它发出高强度的红光,在 670-740 纳米波长范围内的 715 纳米波长处有一个发射峰,这是由于 Mn4+ 从 4A2g 转变为 4T2g 所造成的。当掺入浓度为 0.25 摩尔% 的 Mn 时,LGS:Mn4+ 的量子效率为 16%。随着掺杂浓度的增加,LGS:Mn4+ 的衰变曲线呈现出寿命递减的模式。此外,LGS:Mn4+ 产物的 CIE 色度为 (0.688, 0.2644),位于深红光区域。上述所有研究结果都支持 LGS:Mn4+ 试样在 WLED 中的潜在应用,从而为环保节能照明的发展做出贡献。
{"title":"Preparation and photoluminescence study of rare-earth-free red emitting La3Ga5SiO14:Mn4+phosphors","authors":"Youxin Lou, Yuguo Yang, Zi Yang, Chaofeng Zhu, Haifeng Zhou, Ping Zhao, Xuping Wang","doi":"10.1142/s1793604724500097","DOIUrl":"https://doi.org/10.1142/s1793604724500097","url":null,"abstract":"<p>Given the growing interest in eco-friendly lighting solutions, the use of high-quality phosphors has become integral to the advancement of all-solid white light-emitting diodes (WLEDs). One novel phosphor, La<sub>3</sub>Ga<sub>5</sub>SiO<span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow></mrow><mrow><mn>1</mn><mn>4</mn></mrow></msub></math></span><span></span>:Mn<span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mn>4</mn><mo stretchy=\"false\">+</mo></mrow></msup></math></span><span></span> (LGS), has been successfully synthesized via a high-temperature solid-state reaction. The crystal structure of LGS is classified as belonging to the trigonal phase, with a space group P321. The excitation spectrum exhibits a wide peak within the wavelength range of 280–440 nm. It emits a highly intense red light, with a peak emission occurring at 715 nm within the spectral range of 670–740 nm is attributed to the transition of Mn<span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mn>4</mn><mo stretchy=\"false\">+</mo></mrow></msup></math></span><span></span> from <sup>4</sup>A<span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow></mrow><mrow><mn>2</mn><mstyle><mtext mathvariant=\"normal\">g</mtext></mstyle></mrow></msub></math></span><span></span> to <sup>4</sup>T<span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow></mrow><mrow><mn>2</mn><mstyle><mtext mathvariant=\"normal\">g.</mtext></mstyle></mrow></msub></math></span><span></span> LGS:Mn<span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mn>4</mn><mo stretchy=\"false\">+</mo></mrow></msup></math></span><span></span> demonstrates a favorable quantum efficiency of 16% when doped with a concentration of 0.25 mol% Mn. The decay curve of LGS:Mn<span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mn>4</mn><mo stretchy=\"false\">+</mo></mrow></msup></math></span><span></span> exhibits a pattern of decreasing lifetime as the dopant concentration increases. Additionally, the LGS:Mn<span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mn>4</mn><mo stretchy=\"false\">+</mo></mrow></msup></math></span><span></span> products demonstrate a CIE chromaticity of (0.688, 0.2644), which is located within the deep red light region. All the aforementioned findings support the potential application of LGS:Mn<span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mn>4</mn><mo stretchy=\"false\">+</mo></mrow></msup></math></span><span></span> specimens in WLEDs, thereby contributing to the progress of environmentally friendly and energy-efficient lighting.</p>","PeriodicalId":12701,"journal":{"name":"Functional Materials Letters","volume":"62 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140054051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulation mechanism of electronic and optical properties of Cs2SnX6(X = Cl, Br and I) under hydrostatic or uniaxial pressure 静水压或单轴压下 Cs2SnX6(X = Cl、Br 和 I)电子和光学特性的调制机制
IF 1.3 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-01-05 DOI: 10.1142/s1793604724510123
Cheng Peng, Jianwei Wei, Junhua Wu, Zengwei Ma, Chenkai Qiao, Hui Zeng
{"title":"Modulation mechanism of electronic and optical properties of Cs2SnX6(X = Cl, Br and I) under hydrostatic or uniaxial pressure","authors":"Cheng Peng, Jianwei Wei, Junhua Wu, Zengwei Ma, Chenkai Qiao, Hui Zeng","doi":"10.1142/s1793604724510123","DOIUrl":"https://doi.org/10.1142/s1793604724510123","url":null,"abstract":"","PeriodicalId":12701,"journal":{"name":"Functional Materials Letters","volume":"4 7","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139449914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructures and electromagnetic interference shielding properties of 2D defective Mo1.33C (MXene) 二维缺陷 Mo1.33C (MXene) 的微结构和电磁干扰屏蔽性能
IF 1.3 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-12-15 DOI: 10.1142/s179360472440006x
Jiaxin Yang, Zhaohui Chen, Xiaodan Chi, Tao Yu, Wenyu Deng, Yanjun Lu, Lijun Qi, Shuang Yuan, Qiang Wang, Weibin Cui
{"title":"Microstructures and electromagnetic interference shielding properties of 2D defective Mo1.33C (MXene)","authors":"Jiaxin Yang, Zhaohui Chen, Xiaodan Chi, Tao Yu, Wenyu Deng, Yanjun Lu, Lijun Qi, Shuang Yuan, Qiang Wang, Weibin Cui","doi":"10.1142/s179360472440006x","DOIUrl":"https://doi.org/10.1142/s179360472440006x","url":null,"abstract":"","PeriodicalId":12701,"journal":{"name":"Functional Materials Letters","volume":"12 10","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138996331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Luminescent metal organic frameworks and its fluorescence sensing application 发光金属有机框架及其荧光传感应用
IF 1.3 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-12-15 DOI: 10.1142/s1793604724510081
Mengnan Yuan, Fengzhen Chen, Liang Zhang, Dandan Wang, Zhiqiang Ji, Xiaoyong Wu
{"title":"Luminescent metal organic frameworks and its fluorescence sensing application","authors":"Mengnan Yuan, Fengzhen Chen, Liang Zhang, Dandan Wang, Zhiqiang Ji, Xiaoyong Wu","doi":"10.1142/s1793604724510081","DOIUrl":"https://doi.org/10.1142/s1793604724510081","url":null,"abstract":"","PeriodicalId":12701,"journal":{"name":"Functional Materials Letters","volume":"37 S1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139000111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication and multiphysics numerical investigations of carbon fiber structural batteries 碳纤维结构电池的制造和多物理场数值研究
IF 1.3 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-12-15 DOI: 10.1142/s179360472451007x
Jianhai Liang, Chunzhi Du
{"title":"Fabrication and multiphysics numerical investigations of carbon fiber structural batteries","authors":"Jianhai Liang, Chunzhi Du","doi":"10.1142/s179360472451007x","DOIUrl":"https://doi.org/10.1142/s179360472451007x","url":null,"abstract":"","PeriodicalId":12701,"journal":{"name":"Functional Materials Letters","volume":"74 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138998824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degradation of sodium butylxanthate in flotation wastewater by natural pyrite via visible light-assisted advanced oxidation processes: a comprehensive study 天然黄铁矿通过可见光辅助高级氧化工艺降解浮选废水中的丁基黄原酸钠:一项综合研究
IF 1.3 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-12-15 DOI: 10.1142/s179360472451010x
Jiawei Fan, Jinpeng Wang, Lisha Jiang, Yubiao Li, Xiaoyong Wu
{"title":"Degradation of sodium butylxanthate in flotation wastewater by natural pyrite via visible light-assisted advanced oxidation processes: a comprehensive study","authors":"Jiawei Fan, Jinpeng Wang, Lisha Jiang, Yubiao Li, Xiaoyong Wu","doi":"10.1142/s179360472451010x","DOIUrl":"https://doi.org/10.1142/s179360472451010x","url":null,"abstract":"","PeriodicalId":12701,"journal":{"name":"Functional Materials Letters","volume":"11 15","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139001117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface modification of TiNb alloys by hydrothermal-precalcification treatment and its excellent in vitro osteogenic bioactivity 通过水热预缩合处理对钛铌合金进行表面改性及其优异的体外成骨生物活性
IF 1.3 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-12-15 DOI: 10.1142/s1793604724510093
Hanfeng Zhu, Lin Zheng, X. Liao, Gang Li
{"title":"Surface modification of TiNb alloys by hydrothermal-precalcification treatment and its excellent in vitro osteogenic bioactivity","authors":"Hanfeng Zhu, Lin Zheng, X. Liao, Gang Li","doi":"10.1142/s1793604724510093","DOIUrl":"https://doi.org/10.1142/s1793604724510093","url":null,"abstract":"","PeriodicalId":12701,"journal":{"name":"Functional Materials Letters","volume":"17 22","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138970691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Functional Materials Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1