Key deviation source diagnosis of complex thin-walled structures based on complex networks and weighted transfer entropy

Y.G. Zhu, Q. Shi, W.P. Jiang, B. Deng
{"title":"Key deviation source diagnosis of complex thin-walled structures based on complex networks and weighted transfer entropy","authors":"Y.G. Zhu, Q. Shi, W.P. Jiang, B. Deng","doi":"10.1017/aer.2023.63","DOIUrl":null,"url":null,"abstract":"\n There are many deviation sources in the assembly process of aircraft complex thin-walled structures. To get important factors that affect quality, it is crucial to diagnose the key deviation resources. The deviation transfer between deviation sources and assembly parts has the characteristics of small sample size, nonlinearity, and strong coupling, so it is difficult to diagnose the key deviation sources by constructing assembly dimension chains. Therefore, based on the deviation detection data, transfer entropy and complex network theory are introduced. Integrating the depth-first traversal algorithm with degree centrality theory, a key deviation diagnosis method for complex thin-walled structures is proposed based on weighted transfer entropy and complex networks. The application shows that key deviation sources that affect assembly quality can be accurately identified by the key deviation source diagnosis method based on complex networks and weighted transfer entropy.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Aeronautical Journal (1968)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/aer.2023.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There are many deviation sources in the assembly process of aircraft complex thin-walled structures. To get important factors that affect quality, it is crucial to diagnose the key deviation resources. The deviation transfer between deviation sources and assembly parts has the characteristics of small sample size, nonlinearity, and strong coupling, so it is difficult to diagnose the key deviation sources by constructing assembly dimension chains. Therefore, based on the deviation detection data, transfer entropy and complex network theory are introduced. Integrating the depth-first traversal algorithm with degree centrality theory, a key deviation diagnosis method for complex thin-walled structures is proposed based on weighted transfer entropy and complex networks. The application shows that key deviation sources that affect assembly quality can be accurately identified by the key deviation source diagnosis method based on complex networks and weighted transfer entropy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于复杂网络和加权传递熵的复杂薄壁结构关键偏差源诊断
飞机复杂薄壁结构在装配过程中存在多种偏差源。要找出影响质量的重要因素,关键偏差资源的诊断至关重要。由于偏差源与装配件之间的偏差传递具有小样本量、非线性和强耦合的特点,因此通过构建装配尺寸链来诊断关键偏差源比较困难。因此,在偏差检测数据的基础上,引入了传递熵和复杂网络理论。将深度优先遍历算法与度中心性理论相结合,提出了一种基于加权传递熵和复杂网络的复杂薄壁结构关键偏差诊断方法。应用表明,基于复杂网络和加权传递熵的关键偏差源诊断方法能够准确识别影响装配质量的关键偏差源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spray behaviour of hydro-treated ester fatty acids fuel made from used cooking oil at low injection pressures Visualising flight regimes using self-organising maps A folding wing system for guided ammunitions: mechanism design, manufacturing and real-time results with LQR, LQI, SMC and SOSMC Re-entry vehicle performance analysis under the control of lateral jet Spacecraft attitude control based on generalised dynamic inversion with adaptive neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1