On the pitfalls of Gaussian likelihood scoring for causal discovery

IF 1.7 4区 医学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Journal of Causal Inference Pub Date : 2022-10-20 DOI:10.1515/jci-2022-0068
Christoph Schultheiss, P. Bühlmann
{"title":"On the pitfalls of Gaussian likelihood scoring for causal discovery","authors":"Christoph Schultheiss, P. Bühlmann","doi":"10.1515/jci-2022-0068","DOIUrl":null,"url":null,"abstract":"Abstract We consider likelihood score-based methods for causal discovery in structural causal models. In particular, we focus on Gaussian scoring and analyze the effect of model misspecification in terms of non-Gaussian error distribution. We present a surprising negative result for Gaussian likelihood scoring in combination with nonparametric regression methods.","PeriodicalId":48576,"journal":{"name":"Journal of Causal Inference","volume":"72 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Causal Inference","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/jci-2022-0068","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We consider likelihood score-based methods for causal discovery in structural causal models. In particular, we focus on Gaussian scoring and analyze the effect of model misspecification in terms of non-Gaussian error distribution. We present a surprising negative result for Gaussian likelihood scoring in combination with nonparametric regression methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于因果发现的高斯似然评分的缺陷
我们考虑基于似然评分的方法在结构因果模型中发现因果。我们特别关注高斯评分,并从非高斯误差分布的角度分析模型错配的影响。我们提出了一个令人惊讶的负面结果,高斯似然评分与非参数回归方法相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Causal Inference
Journal of Causal Inference Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.90
自引率
14.30%
发文量
15
审稿时长
86 weeks
期刊介绍: Journal of Causal Inference (JCI) publishes papers on theoretical and applied causal research across the range of academic disciplines that use quantitative tools to study causality.
期刊最新文献
Evaluating Boolean relationships in Configurational Comparative Methods Comparison of open-source software for producing directed acyclic graphs. LINGUISTIC FEATURES AND PRESENTATION OF MATERIALS ON ENGLISH TEXTBOOK “WHEN ENGLISH RINGS A BELL” BASED ON BSNP Heterogeneous interventional effects with multiple mediators: Semiparametric and nonparametric approaches Attributable fraction and related measures: Conceptual relations in the counterfactual framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1