Vision-Based Autonomous Underwater Swimming in Dense Coral for Combined Collision Avoidance and Target Selection

Travis Manderson, J. A. G. Higuera, Ran Cheng, G. Dudek
{"title":"Vision-Based Autonomous Underwater Swimming in Dense Coral for Combined Collision Avoidance and Target Selection","authors":"Travis Manderson, J. A. G. Higuera, Ran Cheng, G. Dudek","doi":"10.1109/IROS.2018.8594410","DOIUrl":null,"url":null,"abstract":"We address the problem of learning vision-based, collision-avoiding, and target-selecting controllers in 3D, specifically in underwater environments densely populated with coral reefs. Using a highly maneuverable, dynamic, six-legged (or flippered) vehicle to swim underwater, we exploit real time visual feedback to make close-range navigation decisions that would be hard to achieve with other sensors. Our approach uses computer vision as the sole mechanism for both collision avoidance and visual target selection. In particular, we seek to swim close to the reef to make observations while avoiding both collisions and barren, coral-deprived regions. To carry out path selection while avoiding collisions, we use monocular image data processed in real time. The proposed system uses a convolutional neural network that takes an image from a forward-facing camera as input and predicts unscaled and relative path changes. The network is trained to encode our desired obstacle-avoidance and reef-exploration objectives via supervised learning from human-labeled data. The predictions from the network are transformed into absolute path changes via a combination of a temporally-smoothed proportional controller for heading targets and a low-level motor controller. This system enables safe and autonomous coral reef navigation in underwater environments. We validate our approach using an untethered and fully autonomous robot swimming through coral reef in the open ocean. Our robot successfully traverses 1000 m of the ocean floor collision-free while collecting close-up footage of coral reefs.","PeriodicalId":6640,"journal":{"name":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"6 1","pages":"1885-1891"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2018.8594410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

We address the problem of learning vision-based, collision-avoiding, and target-selecting controllers in 3D, specifically in underwater environments densely populated with coral reefs. Using a highly maneuverable, dynamic, six-legged (or flippered) vehicle to swim underwater, we exploit real time visual feedback to make close-range navigation decisions that would be hard to achieve with other sensors. Our approach uses computer vision as the sole mechanism for both collision avoidance and visual target selection. In particular, we seek to swim close to the reef to make observations while avoiding both collisions and barren, coral-deprived regions. To carry out path selection while avoiding collisions, we use monocular image data processed in real time. The proposed system uses a convolutional neural network that takes an image from a forward-facing camera as input and predicts unscaled and relative path changes. The network is trained to encode our desired obstacle-avoidance and reef-exploration objectives via supervised learning from human-labeled data. The predictions from the network are transformed into absolute path changes via a combination of a temporally-smoothed proportional controller for heading targets and a low-level motor controller. This system enables safe and autonomous coral reef navigation in underwater environments. We validate our approach using an untethered and fully autonomous robot swimming through coral reef in the open ocean. Our robot successfully traverses 1000 m of the ocean floor collision-free while collecting close-up footage of coral reefs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于视觉的密集珊瑚自主水下游泳避碰与目标选择
我们解决了在3D中学习基于视觉、避碰和目标选择控制器的问题,特别是在珊瑚礁密集的水下环境中。我们使用高度机动、动态的六足(或鳍状)潜水器在水下游泳,利用实时视觉反馈来做出近距离导航决策,这是其他传感器难以实现的。我们的方法使用计算机视觉作为避免碰撞和视觉目标选择的唯一机制。特别是,我们试图游到靠近珊瑚礁的地方进行观察,同时避免碰撞和贫瘠的珊瑚剥夺地区。为了在避免碰撞的同时进行路径选择,我们使用了实时处理的单眼图像数据。该系统使用卷积神经网络,将前置摄像头的图像作为输入,并预测未缩放的相对路径变化。该网络经过训练,通过对人类标记数据的监督学习来编码我们想要的避障和珊瑚礁探索目标。网络的预测通过一个用于航向目标的时间平滑比例控制器和一个低级电机控制器的组合转化为绝对路径变化。该系统可实现水下环境下安全自主的珊瑚礁导航。我们用一个无系绳的完全自主的机器人在开阔的海洋中穿过珊瑚礁来验证我们的方法。我们的机器人成功地穿越了1000米的海底无碰撞,同时收集了珊瑚礁的特写镜头。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On-Chip Virtual Vortex Gear and Its Application Classification of Hanging Garments Using Learned Features Extracted from 3D Point Clouds Deep Sequential Models for Sampling-Based Planning An Adjustable Force Sensitive Sensor with an Electromagnet for a Soft, Distributed, Digital 3-axis Skin Sensor Sliding-Layer Laminates: A Robotic Material Enabling Robust and Adaptable Undulatory Locomotion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1