S. Nanz, A. Abass, E. Slivina, P. Piechulla, A. Sprafke, R. Wehrspohn, C. Rockstuhl
{"title":"Tailored Disorder for the Light Management in Photovoltaics","authors":"S. Nanz, A. Abass, E. Slivina, P. Piechulla, A. Sprafke, R. Wehrspohn, C. Rockstuhl","doi":"10.1109/CLEOE-EQEC.2019.8873414","DOIUrl":null,"url":null,"abstract":"Light management in photovoltaics continues to be an important ingredient when working towards high efficiency devices. Various approaches have been perceived. Besides spectral modification, e.g. based on up- or down-conversion, the spatial and angular redistribution of light is important. For the latter aspect, on which we concentrate here, various supporting photonic structures were suggested, e.g. photonic crystals, metallic nanostructures, or textured interfaces. From a higher executive perspective we can categorize most structures as being either periodic or random. The emergence of such material classes is explained by the fabrication means. The Fourier spectrum, i.e. the angular distribution with which photonic modes can be excited from such structures beyond specific near-field effects is either discrete and wavelength sensitive or unspecific and spectrally flat. Both combinations are far from optimum when integrating them into photovoltaic devices.","PeriodicalId":6714,"journal":{"name":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","volume":"115 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOE-EQEC.2019.8873414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Light management in photovoltaics continues to be an important ingredient when working towards high efficiency devices. Various approaches have been perceived. Besides spectral modification, e.g. based on up- or down-conversion, the spatial and angular redistribution of light is important. For the latter aspect, on which we concentrate here, various supporting photonic structures were suggested, e.g. photonic crystals, metallic nanostructures, or textured interfaces. From a higher executive perspective we can categorize most structures as being either periodic or random. The emergence of such material classes is explained by the fabrication means. The Fourier spectrum, i.e. the angular distribution with which photonic modes can be excited from such structures beyond specific near-field effects is either discrete and wavelength sensitive or unspecific and spectrally flat. Both combinations are far from optimum when integrating them into photovoltaic devices.