Strategies of Preconditioner Updates for Sequences of Linear Systems Associated with the Neutron Diffusion

IF 0.9 Q3 MATHEMATICS, APPLIED Computational and Mathematical Methods Pub Date : 2022-06-26 DOI:10.1155/2022/3884836
A. Carreño, L. Bergamaschi, A. Martínez, D. Ginestar, A. Vidal-Ferràndiz, G. Verdú
{"title":"Strategies of Preconditioner Updates for Sequences of Linear Systems Associated with the Neutron Diffusion","authors":"A. Carreño,&nbsp;L. Bergamaschi,&nbsp;A. Martínez,&nbsp;D. Ginestar,&nbsp;A. Vidal-Ferràndiz,&nbsp;G. Verdú","doi":"10.1155/2022/3884836","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The time-dependent neutron diffusion equation approximates the neutronic power evolution inside a nuclear reactor core. Applying a Galerkin finite element method for the spatial discretization of these equations leads to a stiff semi-discrete system of ordinary differential equations. For time discretization, an implicit scheme is used, which implies solving a large and sparse linear system of equations for each time step. The GMRES method is used to solve these systems because of its fast convergence when a suitable preconditioner is provided. This work explores several matrix-free strategies based on different updated preconditioners, which are constructed by low-rank updates of a given initial preconditioner. They are two tuned preconditioners based on the bad and good Broyden’s methods, initially developed for nonlinear equations and optimization problems, and spectral preconditioners. The efficiency of the resulting preconditioners under study is closely related to the selection of the subspace used to construct the update. Our numerical results show the effectiveness of these methodologies in terms of CPU time and storage for different nuclear benchmark transients, even if the initial preconditioner is not good enough.</p>\n </div>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2022 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2022/3884836","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2022/3884836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The time-dependent neutron diffusion equation approximates the neutronic power evolution inside a nuclear reactor core. Applying a Galerkin finite element method for the spatial discretization of these equations leads to a stiff semi-discrete system of ordinary differential equations. For time discretization, an implicit scheme is used, which implies solving a large and sparse linear system of equations for each time step. The GMRES method is used to solve these systems because of its fast convergence when a suitable preconditioner is provided. This work explores several matrix-free strategies based on different updated preconditioners, which are constructed by low-rank updates of a given initial preconditioner. They are two tuned preconditioners based on the bad and good Broyden’s methods, initially developed for nonlinear equations and optimization problems, and spectral preconditioners. The efficiency of the resulting preconditioners under study is closely related to the selection of the subspace used to construct the update. Our numerical results show the effectiveness of these methodologies in terms of CPU time and storage for different nuclear benchmark transients, even if the initial preconditioner is not good enough.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中子扩散线性系统序列的预条件更新策略
随时间变化的中子扩散方程近似于核反应堆堆芯内中子功率的演化。应用伽辽金有限元法对这些方程进行空间离散化,得到一个刚性的常微分方程半离散系统。对于时间离散,使用隐式格式,这意味着在每个时间步长上求解一个大而稀疏的线性方程组。在给定合适的预条件下,GMRES方法收敛速度快,因此可以应用于此类系统的求解。本文探讨了几种基于不同更新预条件的无矩阵策略,这些预条件是由给定初始预条件的低秩更新构建的。它们是基于bad和good Broyden方法的两种调谐预调节器,最初用于非线性方程和优化问题,以及谱预调节器。所研究的预调节器的效率与用于构造更新的子空间的选择密切相关。我们的数值结果表明,即使初始预调节器不够好,这些方法在CPU时间和存储方面对不同的核基准瞬态是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
On the Efficiency of the Newly Developed Composite Randomized Response Technique Approximate Solution of an Integrodifferential Equation Generalized by Harry Dym Equation Using the Picard Successive Method A Mathematical Analysis of the Impact of Immature Mosquitoes on the Transmission Dynamics of Malaria Parameter-Uniform Convergent Numerical Approach for Time-Fractional Singularly Perturbed Partial Differential Equations With Large Time Delay Mortality Prediction in COVID-19 Using Time Series and Machine Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1