Heat Transfer Characteristics of Super Critical Carbon Dioxide Flow in Horizontal pipes Using Computational Fluid Dynamics and Artificial Neural Networks

Rajendra Prasad
{"title":"Heat Transfer Characteristics of Super Critical Carbon Dioxide Flow in Horizontal pipes Using Computational Fluid Dynamics and Artificial Neural Networks","authors":"Rajendra Prasad","doi":"10.1615/interjfluidmechres.2023048857","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":45450,"journal":{"name":"International Journal of Fluid Mechanics Research","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fluid Mechanics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/interjfluidmechres.2023048857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于计算流体力学和人工神经网络的水平管道超临界二氧化碳流动传热特性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
期刊介绍: For the past 20 years, Fluid Mechanics Research (prior to 1992 Fluid Mechanics-Soviet Research) has offered broad coverage of the entire field of fluid mechanics including flow of compressible and incompressible fluids, vapor-liquid and slurry flows, turbulence, waves, boundary layers, wakes, channel and nozzle flow, fluid-structure interaction, lubrication, flow in porous media, flow through turbo-machinery, aerodynamics and rheology as well as new and innovative measurement techniques. The journal''s coverage is now being broadened to encompass research in the general area of transport phenomena where convective, diffusional and chemical reaction processes are important and to include biological systems as well as technological and geophysical systems. Fluid Mechanics Research has now merged with the TsAGI Journal, a publication of the world-famous Central Aero-Hydrodynamics Institute in Russia. This will position the new International Journal of Fluid Mechanics Research (IJFMR) as a leading journal on the art and science of transport phenomena and its application to the understanding of complex technological systems while maintaining a balance between academic materials and practical applications.
期刊最新文献
Numerical Investigations of a Swirling Two-Phase Air-Water Upward Flow in Straight and Convergent Vertical Pipe Tuning the Splitting Behaviour of Low-Viscous Finger in Bifurcating Network by Surface Wettability Editorial on the need and advantages of nano and smart fluids in the 21st century Heat Transfer Characteristics of Super Critical Carbon Dioxide Flow in Horizontal pipes Using Computational Fluid Dynamics and Artificial Neural Networks Experimental and Numerical Analysis for Modification of separated Boundary Layers over NREL's S822 using Blowing/Suction Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1