D. C. Batara, Shuchang Zhou, Moon-Chang Choi, Sung-Hak Kim
{"title":"Glioblastoma organoid technology: an emerging preclinical models for drug discovery","authors":"D. C. Batara, Shuchang Zhou, Moon-Chang Choi, Sung-Hak Kim","doi":"10.51335/organoid.2022.2.e7","DOIUrl":null,"url":null,"abstract":"Glioblastoma multiforme (GBM) is the most prevalent type of primary brain tumor among adults, and it has a median overall survival of 12 to 15 months upon diagnosis. Despite significant improvements in GBM research, therapeutic options are still limited and survival rates have not significantly improved. Accordingly, clinical and translational studies are hampered due to the lack of suitable preclinical models that accurately reflect the brain tumor architecture and its microenvironment. Scientists have recently developed cerebral organoids, which are artificial 3-dimensional brain-like tissue. Organoid technology provides new cancer modeling options, which could help us better understand GBM pathogenesis and design personalized treatments. In this review, we summarize recent developments in organoid GBM models, highlighting their advantages in cancer modeling, as well as their challenges and limitations and potential future directions in GBM therapy.","PeriodicalId":100198,"journal":{"name":"Brain Organoid and Systems Neuroscience Journal","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Organoid and Systems Neuroscience Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51335/organoid.2022.2.e7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Glioblastoma multiforme (GBM) is the most prevalent type of primary brain tumor among adults, and it has a median overall survival of 12 to 15 months upon diagnosis. Despite significant improvements in GBM research, therapeutic options are still limited and survival rates have not significantly improved. Accordingly, clinical and translational studies are hampered due to the lack of suitable preclinical models that accurately reflect the brain tumor architecture and its microenvironment. Scientists have recently developed cerebral organoids, which are artificial 3-dimensional brain-like tissue. Organoid technology provides new cancer modeling options, which could help us better understand GBM pathogenesis and design personalized treatments. In this review, we summarize recent developments in organoid GBM models, highlighting their advantages in cancer modeling, as well as their challenges and limitations and potential future directions in GBM therapy.