Insight into copper and nickel adsorption from aqueous solutions onto carbon-coated-sand: Isotherms, kinetics, mechanisms, and cost analysis

Zainab Mahdi , Ali El Hanandeh
{"title":"Insight into copper and nickel adsorption from aqueous solutions onto carbon-coated-sand: Isotherms, kinetics, mechanisms, and cost analysis","authors":"Zainab Mahdi ,&nbsp;Ali El Hanandeh","doi":"10.1016/j.clce.2022.100045","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the use of carbon-coated-sand (CCS), as a more sustainable alternative to activated carbon (AC), for the removal of Ni<sup>2+</sup>and Cu<sup>2+</sup> ions from an aqueous solution. The CCS was synthesized from sugar and sand without any additional binders and then activated using 0.1 M H<sub>2</sub>SO<sub>4</sub> to form the modified version called MCSS. Activation increased the specific surface area by 15-folds from 0.409 (CCS) to 6.183 (MCCS) m<sup>2</sup>/g. Multi-linear regression was applied to evaluate the adsorption capacity as a function of three independent factors: pH of the solution; contact time; and initial concentration of the adsorbate. The optimum adsorption of Cu<sup>2+</sup> and Ni<sup>2+</sup> was achieved at pH 6.0 for both adsorbents. Activation enhanced the adsorption capacity by 68% for Cu<sup>2+</sup>and 54% for Ni<sup>2+</sup>. The adsorption behavior under different conditions was successfully modeled using multi-linear regression with high accuracy R<sup>2</sup> &gt; 0.86 for CCS and R<sup>2</sup> &gt; 0.96 for MCCS. Cost estimation provided encouraging evidence of the cost-effectiveness of CCS and MCCS compared to activated carbon. The results obtained in this study revealed that carbon-coating is a promising greener low-cost technique for water treatment.</p></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"3 ","pages":"Article 100045"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772782322000432/pdfft?md5=4fb464b6738a16e746c7c9ee5a40be5d&pid=1-s2.0-S2772782322000432-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772782322000432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This study investigated the use of carbon-coated-sand (CCS), as a more sustainable alternative to activated carbon (AC), for the removal of Ni2+and Cu2+ ions from an aqueous solution. The CCS was synthesized from sugar and sand without any additional binders and then activated using 0.1 M H2SO4 to form the modified version called MCSS. Activation increased the specific surface area by 15-folds from 0.409 (CCS) to 6.183 (MCCS) m2/g. Multi-linear regression was applied to evaluate the adsorption capacity as a function of three independent factors: pH of the solution; contact time; and initial concentration of the adsorbate. The optimum adsorption of Cu2+ and Ni2+ was achieved at pH 6.0 for both adsorbents. Activation enhanced the adsorption capacity by 68% for Cu2+and 54% for Ni2+. The adsorption behavior under different conditions was successfully modeled using multi-linear regression with high accuracy R2 > 0.86 for CCS and R2 > 0.96 for MCCS. Cost estimation provided encouraging evidence of the cost-effectiveness of CCS and MCCS compared to activated carbon. The results obtained in this study revealed that carbon-coating is a promising greener low-cost technique for water treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铜和镍在碳涂层砂上的吸附:等温线、动力学、机制和成本分析
本研究研究了碳包覆砂(CCS)作为活性炭(AC)的可持续替代品,用于去除水溶液中的Ni2+和Cu2+离子。CCS是由糖和沙子合成的,没有任何额外的粘合剂,然后用0.1 M H2SO4活化,形成被称为MCSS的改性版本。活化使比表面积增加了15倍,从0.409 (CCS)增加到6.183 (MCCS) m2/g。采用多元线性回归评价吸附量与三个独立因素的关系:溶液的pH值;接触时间;和吸附物的初始浓度。两种吸附剂在pH为6.0时对Cu2+和Ni2+的吸附效果最佳。活化后对Cu2+和Ni2+的吸附量分别提高了68%和54%。采用高精度R2 >的多元线性回归模型成功模拟了不同条件下的吸附行为;CCS和R2 >为0.86;mcs为0.96。与活性炭相比,成本估算提供了令人鼓舞的证据,证明CCS和mcs的成本效益。本研究结果表明,碳涂层是一种很有前途的绿色低成本水处理技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technological maturity and future perspectives for green diesel production in Brazil A review of the gold nanoparticles' Synthesis and application in dye degradation Polypropylene to transportation fuel grade hydrocarbons over γ-alumina catalyst Optimization of furfural production from xylose over sulfated titanium-niobium mixed oxides catalyst in biphasic system How sustainability can get a competitive advantage: State of the art for stationary battery storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1