F. Sheikh, Yida Zhang, Yamen Zanteh, I. Mabrouk, M. Hasan, T. Kaiser
{"title":"A Ray Tracing Approach to the Scattering of Electromagnetic Waves from Random Rough Surfaces at Terahertz Frequencies","authors":"F. Sheikh, Yida Zhang, Yamen Zanteh, I. Mabrouk, M. Hasan, T. Kaiser","doi":"10.1109/IRMMW-THz46771.2020.9370474","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the in-room THz wireless links across 275 GHz to 325 GHz frequency spectrum in the presence of random rough surfaces interpreting the scattering phenomenon utilizing well-known reflection models. Focus is given to random rough surfaces which can be described statistically. Taking into account the intrinsic material properties (i.e., complex permittivity), we strive to demonstrate a comparison between Rayleigh-Rice (R-R) approach and the real 3D surface topography parameters. The R-R approach approximates the surface deviations or topography of any rough material with Gaussian height distribution. The ray-tracing simulations are conducted in a realistic but simple office environment for line-of-sight (LoS) and non-line-of-sight (NLoS) conditions to study the multipath propagation with its impact on total received power and channel delay profile. To the best of the authors' knowledge, no such work has hitherto been attempted.","PeriodicalId":6746,"journal":{"name":"2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","volume":"76 1","pages":"01-01"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRMMW-THz46771.2020.9370474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, we analyze the in-room THz wireless links across 275 GHz to 325 GHz frequency spectrum in the presence of random rough surfaces interpreting the scattering phenomenon utilizing well-known reflection models. Focus is given to random rough surfaces which can be described statistically. Taking into account the intrinsic material properties (i.e., complex permittivity), we strive to demonstrate a comparison between Rayleigh-Rice (R-R) approach and the real 3D surface topography parameters. The R-R approach approximates the surface deviations or topography of any rough material with Gaussian height distribution. The ray-tracing simulations are conducted in a realistic but simple office environment for line-of-sight (LoS) and non-line-of-sight (NLoS) conditions to study the multipath propagation with its impact on total received power and channel delay profile. To the best of the authors' knowledge, no such work has hitherto been attempted.