P. Abbeel, Adam Coates, Michael Montemerlo, A. Ng, S. Thrun
{"title":"Discriminative Training of Kalman Filters","authors":"P. Abbeel, Adam Coates, Michael Montemerlo, A. Ng, S. Thrun","doi":"10.15607/RSS.2005.I.038","DOIUrl":null,"url":null,"abstract":"Kalman filters are a workhorse of robotics and are routinely used in state-estimation problems. However, their performance critically depends on a large number of modeling parameters which can be very difficult to obtain, and are often set via significant manual tweaking and at a great cost of engineering time. In this paper, we propose a method for automatically learning the noise parameters of a Kalman filter. We also demonstrate on a commercial wheeled rover that our Kalman filter’s learned noise covariance parameters—obtained quickly and fully automatically—significantly outperform an earlier, carefully and laboriously hand-designed one.","PeriodicalId":87357,"journal":{"name":"Robotics science and systems : online proceedings","volume":"15 1","pages":"289-296"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"141","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics science and systems : online proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2005.I.038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 141
Abstract
Kalman filters are a workhorse of robotics and are routinely used in state-estimation problems. However, their performance critically depends on a large number of modeling parameters which can be very difficult to obtain, and are often set via significant manual tweaking and at a great cost of engineering time. In this paper, we propose a method for automatically learning the noise parameters of a Kalman filter. We also demonstrate on a commercial wheeled rover that our Kalman filter’s learned noise covariance parameters—obtained quickly and fully automatically—significantly outperform an earlier, carefully and laboriously hand-designed one.