Research on servo valve-controlled hydraulic motor system based on active disturbance rejection control

Zhijie Duan, C. Sun, Jipeng Li, Yin Tan
{"title":"Research on servo valve-controlled hydraulic motor system based on active disturbance rejection control","authors":"Zhijie Duan, C. Sun, Jipeng Li, Yin Tan","doi":"10.1177/00202940231194115","DOIUrl":null,"url":null,"abstract":"According to the unstable and nonlinear performances of the servo valve-controlled hydraulic motor, classical control methods based on linear theory are gradually unable to meet the high-performance requirements of the system. Using the servo valve-controlled hydraulic motor based on the third-order active disturbance rejection control (ADRC) to improve the dynamic performance of the system is feasible. The mathematical model and the simulation model of the third-order ADRC for the servo valve-controlled hydraulic motor system are established respectively. For the phase lag caused by the third-order ADRC controller, the control performance of the ADRC controller is significantly improved using the advance forecast. The simulation experiment results show that the designed ADRC controller has good tracking performance and stronger robustness of the system than the traditional PID controller.","PeriodicalId":18375,"journal":{"name":"Measurement and Control","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940231194115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

According to the unstable and nonlinear performances of the servo valve-controlled hydraulic motor, classical control methods based on linear theory are gradually unable to meet the high-performance requirements of the system. Using the servo valve-controlled hydraulic motor based on the third-order active disturbance rejection control (ADRC) to improve the dynamic performance of the system is feasible. The mathematical model and the simulation model of the third-order ADRC for the servo valve-controlled hydraulic motor system are established respectively. For the phase lag caused by the third-order ADRC controller, the control performance of the ADRC controller is significantly improved using the advance forecast. The simulation experiment results show that the designed ADRC controller has good tracking performance and stronger robustness of the system than the traditional PID controller.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自抗扰控制的伺服阀控液压马达系统研究
由于伺服阀控液压马达的不稳定性和非线性特性,基于线性理论的经典控制方法逐渐不能满足系统的高性能要求。采用基于三阶自抗扰控制(ADRC)的伺服阀控液压马达来改善系统的动态性能是可行的。分别建立了伺服阀控液压马达系统的三阶自抗扰控制器的数学模型和仿真模型。针对三阶自抗扰控制器的相位滞后问题,采用预估方法显著提高了自抗扰控制器的控制性能。仿真实验结果表明,所设计的自抗扰控制器比传统的PID控制器具有良好的跟踪性能和更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Train timetable and stopping plan generation based on cross-line passenger flow in high-speed railway network Enhancing water pressure sensing in challenging environments: A strain gage technology integrated with deep learning approach Photovoltaic MPPT control and improvement strategies considering environmental factors: based on PID-type sliding mode control and improved grey wolf optimization Tracking controller design for quadrotor UAVs under external disturbances using a high-order sliding mode-assisted disturbance observer Evaluating vehicle trafficability on soft ground using wheel force information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1