Background Subtraction with a Hierarchical Pitman-Yor Process Mixture Model of Generalized Gaussian Distributions

Srikanth Amudala, Samr Ali, N. Bouguila
{"title":"Background Subtraction with a Hierarchical Pitman-Yor Process Mixture Model of Generalized Gaussian Distributions","authors":"Srikanth Amudala, Samr Ali, N. Bouguila","doi":"10.1109/IRI49571.2020.00024","DOIUrl":null,"url":null,"abstract":"This paper presents hierarchical Pitman-Yor process mixture of generalized Gaussian distributions for background subtraction. The motivation behind choosing generalized Gaussian distribution is its flexibility as compared to the widely used Gaussian. We also integrate the Pitman-Yor process into our proposed model for an infinite extension that leads to better performance in the task of background subtraction. Our model is learned via a variational Bayes approach and is applied on the challenging Change Detection dataset. Experimental results on background subtraction show the effectiveness of the proposed algorithm.","PeriodicalId":93159,"journal":{"name":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI49571.2020.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents hierarchical Pitman-Yor process mixture of generalized Gaussian distributions for background subtraction. The motivation behind choosing generalized Gaussian distribution is its flexibility as compared to the widely used Gaussian. We also integrate the Pitman-Yor process into our proposed model for an infinite extension that leads to better performance in the task of background subtraction. Our model is learned via a variational Bayes approach and is applied on the challenging Change Detection dataset. Experimental results on background subtraction show the effectiveness of the proposed algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
广义高斯分布的分层Pitman-Yor过程混合模型的背景减法
本文提出了一种基于分层Pitman-Yor混合过程的广义高斯分布背景减法。选择广义高斯分布的动机是与广泛使用的高斯分布相比,它的灵活性。我们还将Pitman-Yor过程集成到我们提出的模型中,以实现无限扩展,从而在背景减法任务中获得更好的性能。我们的模型是通过变分贝叶斯方法学习的,并应用于具有挑战性的变化检测数据集。背景减法的实验结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Attention-Guided Generative Adversarial Network to Address Atypical Anatomy in Synthetic CT Generation. Natural Language-based Integration of Online Review Datasets for Identification of Sex Trafficking Businesses. An Adaptive and Dynamic Biosensor Epidemic Model for COVID-19 Relating the Empirical Foundations of Attack Generation and Vulnerability Discovery Latent Feature Modelling for Recommender Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1