K-MHaS: A Multi-label Hate Speech Detection Dataset in Korean Online News Comment

Jean Lee, Taejun Lim, Hee-Youn Lee, Bogeun Jo, Yangsok Kim, Heegeun Yoon, S. Han
{"title":"K-MHaS: A Multi-label Hate Speech Detection Dataset in Korean Online News Comment","authors":"Jean Lee, Taejun Lim, Hee-Youn Lee, Bogeun Jo, Yangsok Kim, Heegeun Yoon, S. Han","doi":"10.48550/arXiv.2208.10684","DOIUrl":null,"url":null,"abstract":"Online hate speech detection has become an important issue due to the growth of online content, but resources in languages other than English are extremely limited. We introduce K-MHaS, a new multi-label dataset for hate speech detection that effectively handles Korean language patterns. The dataset consists of 109k utterances from news comments and provides a multi-label classification using 1 to 4 labels, and handles subjectivity and intersectionality. We evaluate strong baselines on K-MHaS. KR-BERT with a sub-character tokenizer outperforms others, recognizing decomposed characters in each hate speech class.","PeriodicalId":91381,"journal":{"name":"Proceedings of COLING. International Conference on Computational Linguistics","volume":"29 1","pages":"3530-3538"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of COLING. International Conference on Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.10684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Online hate speech detection has become an important issue due to the growth of online content, but resources in languages other than English are extremely limited. We introduce K-MHaS, a new multi-label dataset for hate speech detection that effectively handles Korean language patterns. The dataset consists of 109k utterances from news comments and provides a multi-label classification using 1 to 4 labels, and handles subjectivity and intersectionality. We evaluate strong baselines on K-MHaS. KR-BERT with a sub-character tokenizer outperforms others, recognizing decomposed characters in each hate speech class.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于K-MHaS的韩语在线新闻评论多标签仇恨言论检测数据集
由于在线内容的增长,在线仇恨言论检测已成为一个重要问题,但英语以外的语言资源极其有限。我们引入了K-MHaS,这是一种新的多标签数据集,用于仇恨言论检测,可以有效地处理韩语模式。该数据集由来自新闻评论的109k个话语组成,使用1到4个标签进行多标签分类,并处理主观性和交叉性。我们评估K-MHaS的强基线。带有子字符标记器的KR-BERT优于其他工具,可以识别每个仇恨言论类别中的分解字符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Hierarchical Reasoning Chains by Linking Discourse Units and Key Phrases for Reading Comprehension Event Causality Extraction with Event Argument Correlations BERT-Flow-VAE: A Weakly-supervised Model for Multi-Label Text Classification TestAug: A Framework for Augmenting Capability-based NLP Tests Multilingual Word Sense Disambiguation with Unified Sense Representation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1