{"title":"Methane activation and conversion on well-defined metal-oxide Surfaces: in situ studies with synchrotron-based techniques","authors":"J. Rodríguez, Feng Zhang, Z. Liu, S. Senanayake","doi":"10.1039/9781788016971-00198","DOIUrl":null,"url":null,"abstract":"Research focussed on in situ studies for the activation and conversion of methane on well-defined metal-oxide surfaces is reviewed. In recent years, experiments with single-crystal surfaces and well-ordered films have increased our understanding of the interaction of methane with solid surfaces. Late transition metals interact weakly with methane and elevated temperatures (>400 K) are necessary to enable a significant dissociation on the hydrocarbon. In contrast, an IrO2(110) surface dissociates methane at temperatures below 200 K. Cooperative interactions between O and Ir are responsible for the binding of methane and the breaking of a C–H bond. This type of cooperative interactions involving O and a metal cation have also been seen on Ni/CeO2(111) and Co/CeO2(111) surfaces which dissociate methane at room temperature. Experiments of AP-XPS and in situ TR-XRD have shown that the active phase of metal/oxide catalysts used for the dry-reforming of methane frequently is a dynamic entity which evolves when the reaction conditions change. The addition of water to a mixture of CH4/O2 shifts the selectivity towards methanol production on CeO2/CuOx/Cu(111) and Ni/CeO2(111) surfaces. Metal-support interactions and water site-blocking play a crucial role in the conversion of methane to methanol on these catalysts.","PeriodicalId":43717,"journal":{"name":"Catalysis Structure & Reactivity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Structure & Reactivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/9781788016971-00198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 1
Abstract
Research focussed on in situ studies for the activation and conversion of methane on well-defined metal-oxide surfaces is reviewed. In recent years, experiments with single-crystal surfaces and well-ordered films have increased our understanding of the interaction of methane with solid surfaces. Late transition metals interact weakly with methane and elevated temperatures (>400 K) are necessary to enable a significant dissociation on the hydrocarbon. In contrast, an IrO2(110) surface dissociates methane at temperatures below 200 K. Cooperative interactions between O and Ir are responsible for the binding of methane and the breaking of a C–H bond. This type of cooperative interactions involving O and a metal cation have also been seen on Ni/CeO2(111) and Co/CeO2(111) surfaces which dissociate methane at room temperature. Experiments of AP-XPS and in situ TR-XRD have shown that the active phase of metal/oxide catalysts used for the dry-reforming of methane frequently is a dynamic entity which evolves when the reaction conditions change. The addition of water to a mixture of CH4/O2 shifts the selectivity towards methanol production on CeO2/CuOx/Cu(111) and Ni/CeO2(111) surfaces. Metal-support interactions and water site-blocking play a crucial role in the conversion of methane to methanol on these catalysts.