{"title":"Dynamic system models and their simulation in the Semantic Web","authors":"Moritz Stüber, Georg Frey","doi":"10.3233/sw-233359","DOIUrl":null,"url":null,"abstract":"Modelling and Simulation (M&S) are core tools for designing, analysing and operating today’s industrial systems. They often also represent both a valuable asset and a significant investment. Typically, their use is constrained to a software environment intended to be used by engineers on a single computer. However, the knowledge relevant to a task involving modelling and simulation is in general distributed in nature, even across organizational boundaries, and may be large in volume. Therefore, it is desirable to increase the FAIRness (Findability, Accessibility, Interoperability, and Reuse) of M&S capabilities; to enable their use in loosely coupled systems of systems; and to support their composition and execution by intelligent software agents. In this contribution, the suitability of Semantic Web technologies to achieve these goals is investigated and an open-source proof of concept-implementation based on the Functional Mock-up Interface (FMI) standard is presented. Specifically, models, model instances, and simulation results are exposed through a hypermedia API and an implementation of the Pragmatic Proof Algorithm (PPA) is used to successfully demonstrate the API’s use by a generic software agent. The solution shows an increased degree of FAIRness and fully supports its use in loosely coupled systems. The FAIRness could be further improved by providing more “ rich” (meta)data.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"4 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/sw-233359","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Modelling and Simulation (M&S) are core tools for designing, analysing and operating today’s industrial systems. They often also represent both a valuable asset and a significant investment. Typically, their use is constrained to a software environment intended to be used by engineers on a single computer. However, the knowledge relevant to a task involving modelling and simulation is in general distributed in nature, even across organizational boundaries, and may be large in volume. Therefore, it is desirable to increase the FAIRness (Findability, Accessibility, Interoperability, and Reuse) of M&S capabilities; to enable their use in loosely coupled systems of systems; and to support their composition and execution by intelligent software agents. In this contribution, the suitability of Semantic Web technologies to achieve these goals is investigated and an open-source proof of concept-implementation based on the Functional Mock-up Interface (FMI) standard is presented. Specifically, models, model instances, and simulation results are exposed through a hypermedia API and an implementation of the Pragmatic Proof Algorithm (PPA) is used to successfully demonstrate the API’s use by a generic software agent. The solution shows an increased degree of FAIRness and fully supports its use in loosely coupled systems. The FAIRness could be further improved by providing more “ rich” (meta)data.
Semantic WebCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍:
The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.