Robustness of Optimal Sensor Methods in Dynamic Testing–Comparison and Implementation on a Footbridge

Marc Lizana, J. Casas
{"title":"Robustness of Optimal Sensor Methods in Dynamic Testing–Comparison and Implementation on a Footbridge","authors":"Marc Lizana, J. Casas","doi":"10.3390/dynamics2020007","DOIUrl":null,"url":null,"abstract":"One of the objectives of structural health monitoring (SHM) is to maximize the information while keeping the number of sensors, and consequently the cost of the sensor system, to a minimum. Besides, the sensor configurations must be robust in the sense that the feasibility of small errors inherent to the process must not lead to large variations in the final results. This paper presents novelties regarding the robustness evaluation to model and measurement errors of four of the most influential optimal sensor placement (OSP) methods: the modal kinetic energy (MKE) method; the effective independence (EFI) method; the information entropy index (IEI) method; and the MinMAC method. The four OSP methods were implemented on the Streicker Bridge, a footbridge located on the Princeton University Campus, to identify five mode shapes of the bridge. The mode shapes, obtained in a FE model’s modal analysis, were used as input data for the OSP analyses. The study indicates that the MKE method seems to be the most suitable method to estimate the optimal sensor positions: it provides a relatively large amount of information with the lowest computational time, and it outperforms the other three methods in terms of robustness in the usual range of number of sensors.","PeriodicalId":80276,"journal":{"name":"Dynamics (Pembroke, Ont.)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics (Pembroke, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dynamics2020007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the objectives of structural health monitoring (SHM) is to maximize the information while keeping the number of sensors, and consequently the cost of the sensor system, to a minimum. Besides, the sensor configurations must be robust in the sense that the feasibility of small errors inherent to the process must not lead to large variations in the final results. This paper presents novelties regarding the robustness evaluation to model and measurement errors of four of the most influential optimal sensor placement (OSP) methods: the modal kinetic energy (MKE) method; the effective independence (EFI) method; the information entropy index (IEI) method; and the MinMAC method. The four OSP methods were implemented on the Streicker Bridge, a footbridge located on the Princeton University Campus, to identify five mode shapes of the bridge. The mode shapes, obtained in a FE model’s modal analysis, were used as input data for the OSP analyses. The study indicates that the MKE method seems to be the most suitable method to estimate the optimal sensor positions: it provides a relatively large amount of information with the lowest computational time, and it outperforms the other three methods in terms of robustness in the usual range of number of sensors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态测试中最优传感器方法的鲁棒性——人行天桥的比较与实现
结构健康监测(SHM)的目标之一是最大化信息,同时保持传感器的数量,从而使传感器系统的成本降至最低。此外,传感器配置必须具有鲁棒性,即过程固有的小误差的可行性不得导致最终结果的大变化。本文介绍了四种最具影响力的最优传感器放置(OSP)方法的模型鲁棒性评价和测量误差方面的新进展:模态动能(MKE)方法;有效独立性(EFI)法;信息熵指数(IEI)法;以及MinMAC方法。四种OSP方法在Streicker桥上实施,这是一座位于普林斯顿大学校园的人行桥,以确定桥梁的五种模态振型。在有限元模型的模态分析中得到的模态振型被用作OSP分析的输入数据。研究表明,MKE方法似乎是最适合估计最优传感器位置的方法:它以最少的计算时间提供了相对大量的信息,并且在通常的传感器数量范围内,它的鲁棒性优于其他三种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring Transition from Stability to Chaos through Random Matrices Robust Global Trends during Pandemics: Analysing the Interplay of Biological and Social Processes Unveiling Dynamical Symmetries in 2D Chaotic Iterative Maps with Ordinal-Patterns-Based Complexity Quantifiers Thermal Hydraulics Simulation of a Water Spray System for a Cooling Fluid Catalytic Cracking (FCC) Regenerator Investigation of Jamming Phenomenon in a Direct Reduction Furnace Pellet Feed System Using the Discrete Element Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1