Athanasios Zouzos, Aleksandra Milovanovic, Karin Dembrower, Fredrik Strand
{"title":"Effect of Benign Biopsy Findings on an Artificial Intelligence-Based Cancer Detector in Screening Mammography: Retrospective Case-Control Study.","authors":"Athanasios Zouzos, Aleksandra Milovanovic, Karin Dembrower, Fredrik Strand","doi":"10.2196/48123","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Artificial intelligence (AI)-based cancer detectors (CAD) for mammography are starting to be used for breast cancer screening in radiology departments. It is important to understand how AI CAD systems react to benign lesions, especially those that have been subjected to biopsy.</p><p><strong>Objective: </strong>Our goal was to corroborate the hypothesis that women with previous benign biopsy and cytology assessments would subsequently present increased AI CAD abnormality scores even though they remained healthy.</p><p><strong>Methods: </strong>This is a retrospective study applying a commercial AI CAD system (Insight MMG, version 1.1.4.3; Lunit Inc) to a cancer-enriched mammography screening data set of 10,889 women (median age 56, range 40-74 years). The AI CAD generated a continuous prediction score for tumor suspicion between 0.00 and 1.00, where 1.00 represented the highest level of suspicion. A binary read (flagged or not flagged) was defined on the basis of a predetermined cutoff threshold (0.40). The flagged median and proportion of AI scores were calculated for women who were healthy, those who had a benign biopsy finding, and those who were diagnosed with breast cancer. For women with a benign biopsy finding, the interval between mammography and the biopsy was used for stratification of AI scores. The effect of increasing age was examined using subgroup analysis and regression modeling.</p><p><strong>Results: </strong>Of a total of 10,889 women, 234 had a benign biopsy finding before or after screening. The proportions of flagged healthy women were 3.5%, 11%, and 84% for healthy women without a benign biopsy finding, those with a benign biopsy finding, and women with breast cancer, respectively (P<.001). For the 8307 women with complete information, radiologist 1, radiologist 2, and the AI CAD system flagged 8.5%, 6.8%, and 8.5% of examinations of women who had a prior benign biopsy finding. The AI score correlated only with increasing age of the women in the cancer group (P=.01).</p><p><strong>Conclusions: </strong>Compared to healthy women without a biopsy, the examined AI CAD system flagged a much larger proportion of women who had or would have a benign biopsy finding based on a radiologist's decision. However, the flagging rate was not higher than that for radiologists. Further research should be focused on training the AI CAD system taking prior biopsy information into account.</p>","PeriodicalId":47578,"journal":{"name":"Journal of Public Policy","volume":"5 1","pages":"e48123"},"PeriodicalIF":1.9000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041399/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Public Policy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/48123","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLITICAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Artificial intelligence (AI)-based cancer detectors (CAD) for mammography are starting to be used for breast cancer screening in radiology departments. It is important to understand how AI CAD systems react to benign lesions, especially those that have been subjected to biopsy.
Objective: Our goal was to corroborate the hypothesis that women with previous benign biopsy and cytology assessments would subsequently present increased AI CAD abnormality scores even though they remained healthy.
Methods: This is a retrospective study applying a commercial AI CAD system (Insight MMG, version 1.1.4.3; Lunit Inc) to a cancer-enriched mammography screening data set of 10,889 women (median age 56, range 40-74 years). The AI CAD generated a continuous prediction score for tumor suspicion between 0.00 and 1.00, where 1.00 represented the highest level of suspicion. A binary read (flagged or not flagged) was defined on the basis of a predetermined cutoff threshold (0.40). The flagged median and proportion of AI scores were calculated for women who were healthy, those who had a benign biopsy finding, and those who were diagnosed with breast cancer. For women with a benign biopsy finding, the interval between mammography and the biopsy was used for stratification of AI scores. The effect of increasing age was examined using subgroup analysis and regression modeling.
Results: Of a total of 10,889 women, 234 had a benign biopsy finding before or after screening. The proportions of flagged healthy women were 3.5%, 11%, and 84% for healthy women without a benign biopsy finding, those with a benign biopsy finding, and women with breast cancer, respectively (P<.001). For the 8307 women with complete information, radiologist 1, radiologist 2, and the AI CAD system flagged 8.5%, 6.8%, and 8.5% of examinations of women who had a prior benign biopsy finding. The AI score correlated only with increasing age of the women in the cancer group (P=.01).
Conclusions: Compared to healthy women without a biopsy, the examined AI CAD system flagged a much larger proportion of women who had or would have a benign biopsy finding based on a radiologist's decision. However, the flagging rate was not higher than that for radiologists. Further research should be focused on training the AI CAD system taking prior biopsy information into account.
期刊介绍:
The Journal of Public Policy applies social science theories and concepts to significant political, economic and social issues and to the ways in which public policies are made. Its articles deal with topics of concern to public policy scholars in America, Europe, Japan and other advanced industrial nations. The journal often publishes articles that cut across disciplines, such as environmental issues, international political economy, regulatory policy and European Union processes. Its peer reviewers come from up to a dozen social science disciplines and countries across three continents, thus ensuring both analytic rigour and accuracy in reference to national and policy context.