Predicting student's psychomotor domain on the vocational senior high school using linear regression

R. Harimurti, Y. Yamasari, Ekohariadi, Munoto, B. I. Asto
{"title":"Predicting student's psychomotor domain on the vocational senior high school using linear regression","authors":"R. Harimurti, Y. Yamasari, Ekohariadi, Munoto, B. I. Asto","doi":"10.1109/ICOIACT.2018.8350768","DOIUrl":null,"url":null,"abstract":"The educational data can be mined to produce the useful knowledge. This paper focuses on the educational data processing to predict student's psychomotor domain. Here, we apply linear regression method to do it. On process stage, we use 4 regularizations, namely: no regularization, ridge regression, lasso regression and elastic net regression. Furthermore, we exploit 2 sampling methods as the evaluation technique, for examples: cross-validation sampling and random sampling. The experimental result indicates that the best regularization on cross-validation and random sampling are an elastic net regression because this regularization achieves the lowest predicting error. On cross-validation, values of MSE, RMSE, and MAE are 40.079, 6.330 and 5.183, respectively. Additionally, for random sampling, respectively, values of MSE, RMSE, and MAE are 86.910, 8.428 and 6.511.","PeriodicalId":6660,"journal":{"name":"2018 International Conference on Information and Communications Technology (ICOIACT)","volume":"48 1","pages":"448-453"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information and Communications Technology (ICOIACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIACT.2018.8350768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The educational data can be mined to produce the useful knowledge. This paper focuses on the educational data processing to predict student's psychomotor domain. Here, we apply linear regression method to do it. On process stage, we use 4 regularizations, namely: no regularization, ridge regression, lasso regression and elastic net regression. Furthermore, we exploit 2 sampling methods as the evaluation technique, for examples: cross-validation sampling and random sampling. The experimental result indicates that the best regularization on cross-validation and random sampling are an elastic net regression because this regularization achieves the lowest predicting error. On cross-validation, values of MSE, RMSE, and MAE are 40.079, 6.330 and 5.183, respectively. Additionally, for random sampling, respectively, values of MSE, RMSE, and MAE are 86.910, 8.428 and 6.511.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
运用线性回归预测职业高中学生心理运动域
通过对教育数据的挖掘,可以产生有用的知识。本文主要研究了教育数据处理对学生心理运动领域的预测。在这里,我们采用线性回归的方法来做。在过程阶段,我们使用了4种正则化,即:无正则化、脊回归、套索回归和弹性网回归。此外,我们采用了交叉验证抽样和随机抽样两种抽样方法作为评估技术。实验结果表明,交叉验证和随机抽样的最佳正则化是弹性网回归,因为该正则化的预测误差最小。经交叉验证,MSE、RMSE和MAE分别为40.079、6.330和5.183。随机抽样的MSE、RMSE和MAE分别为86.910、8.428和6.511。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data Normalization and Database Design for Joglosemar Tourism Management of fault tolerance and traffic congestion in cloud data center Development of smart public transportation system in Jakarta city based on integrated IoT platform Improving the quality of enterprise IT goals using COBIT 5 prioritization approach Data mining technique with cluster anaysis use K-means algorithm for LQ45 index on Indonesia stock exchange
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1