Thermal behavior characterization for MOSFETs and BJTs in hazardous locations

IF 0.3 4区 工程技术 Q4 ENGINEERING, MULTIDISCIPLINARY Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria Pub Date : 2021-01-01 DOI:10.23967/J.RIMNI.2021.03.002
D. Cárdenas, J. Delgado
{"title":"Thermal behavior characterization for MOSFETs and BJTs in hazardous locations","authors":"D. Cárdenas, J. Delgado","doi":"10.23967/J.RIMNI.2021.03.002","DOIUrl":null,"url":null,"abstract":"Este artículo muestra una aproximación polinomial numérica al tema de cómo los transistores de unión bipolar (BJT) y los transistores de efecto de campo (FET) pueden resultar seguros o inseguros cuando funcionan en atmósferas explosivas. Se han analizado termográficamente los transistores más utilizados, trabajando en un entorno controlado, para caracterizar su comportamiento térmico. El objetivo es evitar que el transistor propicie condiciones que logran la energía mínima de activación de vapores, polvos o fibras volátiles combustibles. Hemos llevado los transistores a sus valores nominales, especificados por corrientes y voltajes de trabajo, y confirmamos que el efecto de la disipación de calor en un transistor BJT es no lineal y mucho mayor que en un transistor tipo MOSFET. Hemos encontrado experimentalmente una diferencia térmica de más de 200°C de sobrecalentamiento de un BJT común en comparación con un MOSFET con carga similar en polarización fija. Logramos medir temperaturas superiores a los 300ºC en BJTs que operan dentro de sus rangos y condiciones nominales, cuando se supone que la temperatura “segura” aceptada no debe superar 200ºC en ningún caso. Por medio de un análisis de desempeño enfocado en la temperatura, nuestro estudio sugiere que no se deben implementar equipos con tecnologías BJT en ciertas áreas de lugares clasificados o zonas explosivas; por lo que son preferibles las tecnologías MOSFET.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"34 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.23967/J.RIMNI.2021.03.002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Este artículo muestra una aproximación polinomial numérica al tema de cómo los transistores de unión bipolar (BJT) y los transistores de efecto de campo (FET) pueden resultar seguros o inseguros cuando funcionan en atmósferas explosivas. Se han analizado termográficamente los transistores más utilizados, trabajando en un entorno controlado, para caracterizar su comportamiento térmico. El objetivo es evitar que el transistor propicie condiciones que logran la energía mínima de activación de vapores, polvos o fibras volátiles combustibles. Hemos llevado los transistores a sus valores nominales, especificados por corrientes y voltajes de trabajo, y confirmamos que el efecto de la disipación de calor en un transistor BJT es no lineal y mucho mayor que en un transistor tipo MOSFET. Hemos encontrado experimentalmente una diferencia térmica de más de 200°C de sobrecalentamiento de un BJT común en comparación con un MOSFET con carga similar en polarización fija. Logramos medir temperaturas superiores a los 300ºC en BJTs que operan dentro de sus rangos y condiciones nominales, cuando se supone que la temperatura “segura” aceptada no debe superar 200ºC en ningún caso. Por medio de un análisis de desempeño enfocado en la temperatura, nuestro estudio sugiere que no se deben implementar equipos con tecnologías BJT en ciertas áreas de lugares clasificados o zonas explosivas; por lo que son preferibles las tecnologías MOSFET.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
危险场所中mosfet和bjt的热行为表征
本文展示了双极结晶体管(BJT)和场效应晶体管(FET)在爆炸性环境中工作时如何安全或不安全的数值多项式方法。热成像分析了最常用的晶体管,在受控环境下工作,以表征它们的热行为。其目的是防止晶体管提供的条件达到可燃蒸汽、粉末或挥发性纤维的最小活化能。我们将晶体管调到它们的标称值,由工作电流和电压指定,并确认BJT晶体管的散热效应是非线性的,比MOSFET型晶体管大得多。我们在实验中发现,与具有相似固定极化电荷的MOSFET相比,普通BJT的过热热差超过200°C。我们能够在bts的额定范围和条件下测量超过300ºC的温度,假设在任何情况下接受的“安全”温度都不应超过200ºC。通过以温度为重点的性能分析,我们的研究建议,不应在机密场所或爆炸性区域的某些区域使用BJT技术的设备;因此,MOSFET技术是首选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
26
审稿时长
6 months
期刊介绍: International Journal of Numerical Methods for Calculation and Design in Engineering (RIMNI) contributes to the spread of theoretical advances and practical applications of numerical methods in engineering and other applied sciences. RIMNI publishes articles written in Spanish, Portuguese and English. The scope of the journal includes mathematical and numerical models of engineering problems, development and application of numerical methods, advances in software, computer design innovations, educational aspects of numerical methods, etc. RIMNI is an essential source of information for scientifics and engineers in numerical methods theory and applications. RIMNI contributes to the interdisciplinar exchange and thus shortens the distance between theoretical developments and practical applications.
期刊最新文献
Bearing life prediction based on critical interface method under multiaxial random loading Construction monitoring and finite element simulation of assembly support for large cantilever cover beam Passive periodic motion of an asymmetric spring loaded inverted pendulum hopping robot A BP neural network-based micro particle parameters calibration and an energy criterion for the application of strength reduction method in MatDEM to evaluate 3D slope stability Parallel computing for reducing time in security constrained optimal power flow analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1