Using general-purpose integer programming software to generate bounded solutions for the multiple knapsack problem: a guide for or practitioners

Emre Shively-Ertas, Yun Lu, M. Song, Francis J. Vasko
{"title":"Using general-purpose integer programming software to generate bounded solutions for the multiple knapsack problem: a guide for or practitioners","authors":"Emre Shively-Ertas, Yun Lu, M. Song, Francis J. Vasko","doi":"10.12928/ijio.v4i1.6446","DOIUrl":null,"url":null,"abstract":"An NP-Hard combinatorial optimization problem that has significant industrial applications is the Multiple Knapsack Problem. If approximate solution approaches are used to solve the Multiple Knapsack Problem there are no guarantees on solution quality and exact solution approaches can be intricate and challenging to implement.  This article demonstrates the iterative use of general-purpose integer programming software (Gurobi) to generate solutions for test problems that are available in the literature. Using the software package Gurobi on a standard PC, we generate in a relatively straightforward manner solutions to these problems in an average of less than a minute that are guaranteed to be within 0.16% of the optimum.  This algorithm, called the Simple Sequential Increasing Tolerance (SSIT) algorithm, iteratively increases tolerances in Gurobi to generate a solution that is guaranteed to be close to the optimum in a short time. This solution strategy generates bounded solutions in a timely manner without requiring the coding of a problem-specific algorithm. This approach is attractive to management for solving industrial problems because it is both cost and time effective and guarantees the quality of the generated solutions.  Finally, comparing SSIT results for 480 large multiple knapsack problem instances to results using published multiple knapsack problem algorithms demonstrates that SSIT outperforms these specialized algorithms.","PeriodicalId":52674,"journal":{"name":"International Journal of Industrial Electronics Control and Optimization","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Industrial Electronics Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12928/ijio.v4i1.6446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An NP-Hard combinatorial optimization problem that has significant industrial applications is the Multiple Knapsack Problem. If approximate solution approaches are used to solve the Multiple Knapsack Problem there are no guarantees on solution quality and exact solution approaches can be intricate and challenging to implement.  This article demonstrates the iterative use of general-purpose integer programming software (Gurobi) to generate solutions for test problems that are available in the literature. Using the software package Gurobi on a standard PC, we generate in a relatively straightforward manner solutions to these problems in an average of less than a minute that are guaranteed to be within 0.16% of the optimum.  This algorithm, called the Simple Sequential Increasing Tolerance (SSIT) algorithm, iteratively increases tolerances in Gurobi to generate a solution that is guaranteed to be close to the optimum in a short time. This solution strategy generates bounded solutions in a timely manner without requiring the coding of a problem-specific algorithm. This approach is attractive to management for solving industrial problems because it is both cost and time effective and guarantees the quality of the generated solutions.  Finally, comparing SSIT results for 480 large multiple knapsack problem instances to results using published multiple knapsack problem algorithms demonstrates that SSIT outperforms these specialized algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用通用整数编程软件生成多背包问题的有界解:实践者指南
一个具有重要工业应用的NP-Hard组合优化问题是多重背包问题。如果使用近似解方法来求解多背包问题,则无法保证解的质量,并且精确解方法可能是复杂且具有挑战性的。本文演示了通用整数编程软件(robi)的迭代使用,以生成文献中可用的测试问题的解决方案。在标准PC上使用Gurobi软件包,我们以相对直接的方式生成这些问题的解决方案,平均不到一分钟,保证在最佳的0.16%以内。该算法被称为简单顺序增加公差(SSIT)算法,迭代地增加Gurobi中的公差,以生成保证在短时间内接近最优的解。该解决方案策略可以及时生成有界的解决方案,而不需要编写特定于问题的算法。这种方法对解决工业问题的管理具有吸引力,因为它既节省成本又节省时间,并保证生成的解决方案的质量。最后,将480个大型多背包问题实例的SSIT结果与使用已发布的多背包问题算法的结果进行比较,表明SSIT优于这些专用算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
15 weeks
期刊最新文献
Long term currency forecast with multiple trend corrected exponential smoothing with shifting lags Embedded response technology and service cloud platform for vehicle information tracking Analysis of the effect of temperature and raw material mixes on the pyrolysis process with single retort-rocket stove technology on the characteristics of sawdust charcoal briquettes Using general-purpose integer programming software to generate bounded solutions for the multiple knapsack problem: a guide for or practitioners Online synchronous inspection and system optimization of flexible food packaging bags by using machine vision and sensing technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1