Hot cracking of nickel-based superalloy turbine blade

Ł. Rakoczy, L. Tuz, K. Pańcikiewicz
{"title":"Hot cracking of nickel-based superalloy turbine blade","authors":"Ł. Rakoczy, L. Tuz, K. Pańcikiewicz","doi":"10.7494/MAFE.2015.41.4.181","DOIUrl":null,"url":null,"abstract":"The aim of this study was to present the hot cracking behavior of a blade originating from a turbine blade segment. The crack was induced by a gas tungsten arc welding process, and the research material was a MAR-M247 nickel based superalloy. This alloy is considered to be difficult to weld because of its high tendency to crack. Light microscopy and scanning electron microscopy show the occurrence of cracking in the melted zone, heat-affected zone, and base alloy. A scanning electron microscopy investigation revealed that cracks are propagated by stresses and liquation of the low temperature constituent.","PeriodicalId":18751,"journal":{"name":"Metallurgy and Foundry Engineering","volume":"6 1","pages":"181"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgy and Foundry Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/MAFE.2015.41.4.181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study was to present the hot cracking behavior of a blade originating from a turbine blade segment. The crack was induced by a gas tungsten arc welding process, and the research material was a MAR-M247 nickel based superalloy. This alloy is considered to be difficult to weld because of its high tendency to crack. Light microscopy and scanning electron microscopy show the occurrence of cracking in the melted zone, heat-affected zone, and base alloy. A scanning electron microscopy investigation revealed that cracks are propagated by stresses and liquation of the low temperature constituent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
镍基高温合金涡轮叶片的热裂
本研究的目的是提出热裂行为的叶片起源于涡轮叶片段。采用钨气弧焊诱发裂纹,研究材料为MAR-M247镍基高温合金。这种合金被认为是难以焊接的,因为它很容易开裂。光镜和扫描电镜显示,在熔化区、热影响区和基体合金中出现了裂纹。扫描电镜研究表明,裂纹是通过应力和低温成分液化而扩展的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The influence of forming conditions on the hardness of balls formed in the skew rolling process Comparative studies of the electroreduction of zinc ions from gluconate solutions EXPERIMENTAL STUDY ON DP600 CLINCHED JOINTS EFFECT OF ORGANIC ADDITIVES ON ELECTRODEPOSITION OF TIN FROM ACID SULFATE SOLUTION Influence of ladle shroud and change in its position on liquid steel flow hydrodynamic structure in six-strand tundish
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1