A software framework for multi-agent control of multiple autonomous underwater vehicles for underwater mine counter-measures

Howard Li, Alexandru Popa, Carl Thibault, M. Trentini, M. Seto
{"title":"A software framework for multi-agent control of multiple autonomous underwater vehicles for underwater mine counter-measures","authors":"Howard Li, Alexandru Popa, Carl Thibault, M. Trentini, M. Seto","doi":"10.1109/AIS.2010.5547032","DOIUrl":null,"url":null,"abstract":"In this study, a novel robot control framework is presented for multiple autonomous underwater vehicles. In this framework, we incorporate sonar sensor data and integrated navigation system position data in a simulation environment, called UNBeatable-Sim, where complex control behaviors can be executed and analyzed. UNBeatable-Sim is developed by the COllaboration Based Robotics and Automation (COBRA) research group at the University of New Brunswick, Canada. Range and pose sensor data are accumulated in an ocean environment constructed using seabed data collected at Bedford Basin, Nova Scotia, Canada by DRDC Atlantic. A seabed map is generated from the real-world data using UNBeatable-Sim. The underwater vehicle and the seabed are simulated and visualized using OpenGL. An external controller implemented using Matlab and Simulink is used to control the robot model. Simulations of multiple underwater vehicles to navigate in the ocean environment to sense and map the seabed are performed using UNBeatable-Sim to assess the system architecture and controller performance.","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"11 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/AIS.2010.5547032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

In this study, a novel robot control framework is presented for multiple autonomous underwater vehicles. In this framework, we incorporate sonar sensor data and integrated navigation system position data in a simulation environment, called UNBeatable-Sim, where complex control behaviors can be executed and analyzed. UNBeatable-Sim is developed by the COllaboration Based Robotics and Automation (COBRA) research group at the University of New Brunswick, Canada. Range and pose sensor data are accumulated in an ocean environment constructed using seabed data collected at Bedford Basin, Nova Scotia, Canada by DRDC Atlantic. A seabed map is generated from the real-world data using UNBeatable-Sim. The underwater vehicle and the seabed are simulated and visualized using OpenGL. An external controller implemented using Matlab and Simulink is used to control the robot model. Simulations of multiple underwater vehicles to navigate in the ocean environment to sense and map the seabed are performed using UNBeatable-Sim to assess the system architecture and controller performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对水雷对抗的多自主水下航行器多智能体控制软件框架
本文提出了一种针对多自主水下航行器的新型机器人控制框架。在这个框架中,我们将声纳传感器数据和综合导航系统位置数据整合到一个名为UNBeatable-Sim的模拟环境中,在这个环境中可以执行和分析复杂的控制行为。UNBeatable-Sim是由加拿大新不伦瑞克大学基于协作的机器人和自动化(COBRA)研究小组开发的。距离和姿态传感器数据是在加拿大新斯科舍省贝德福德盆地收集的海底数据构建的海洋环境中积累的。使用UNBeatable-Sim从真实世界的数据生成海底地图。利用OpenGL对水下航行器和海底进行了仿真和可视化。利用Matlab和Simulink实现的外部控制器对机器人模型进行控制。使用UNBeatable-Sim对多个水下航行器在海洋环境中导航以感知和绘制海底地图进行了模拟,以评估系统架构和控制器性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
期刊最新文献
Stabilization of nonlinear safety-critical systems by relaxed converse Lyapunov-barrier approach and its applications in robotic systems Pedestrian safety alarm system based on binocular distance measurement for trucks using recognition feature analysis Multi-objective optimal trajectory planning for manipulators based on CMOSPBO A multi-step regularity assessment and joint prediction system for ordering time series based on entropy and deep learning Life cycle assessment of metal powder production: a Bayesian stochastic Kriging model-based autonomous estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1