Integrating Seismic Inversion in Static Uncertainties

F. Piriac, P. Biver, S. Halfaoui
{"title":"Integrating Seismic Inversion in Static Uncertainties","authors":"F. Piriac, P. Biver, S. Halfaoui","doi":"10.3997/2214-4609.201900712","DOIUrl":null,"url":null,"abstract":"Summary Resources estimation has always been the main challenge for the oil and gas industry. The uncertainties accounting for this estimation are split into Structural, Static and Dynamic uncertainties and each component can have a major impact on the final resources estimation. This paper is dealing with the static uncertainties component coming from seismic inversion and proposes a workflow to derive stochastic multi-realizations from deterministic inversion results through geostatistical simulations. In order to validate the approach, the described methodology is first compared to a stochastic seismic inversion of elastic properties performed on a real data set (turbiditic deep offshore, Australia). Then a generalization of the workflow is proposed for litho-seismic attribute in order to constrain the geomodel in-filling. The obtained results show that deterministic inversion results could be integrated in a global uncertainty workflow and thus contribute to the range of the stock-tank original oil in place volume (STOOIP).","PeriodicalId":6840,"journal":{"name":"81st EAGE Conference and Exhibition 2019","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"81st EAGE Conference and Exhibition 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201900712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Summary Resources estimation has always been the main challenge for the oil and gas industry. The uncertainties accounting for this estimation are split into Structural, Static and Dynamic uncertainties and each component can have a major impact on the final resources estimation. This paper is dealing with the static uncertainties component coming from seismic inversion and proposes a workflow to derive stochastic multi-realizations from deterministic inversion results through geostatistical simulations. In order to validate the approach, the described methodology is first compared to a stochastic seismic inversion of elastic properties performed on a real data set (turbiditic deep offshore, Australia). Then a generalization of the workflow is proposed for litho-seismic attribute in order to constrain the geomodel in-filling. The obtained results show that deterministic inversion results could be integrated in a global uncertainty workflow and thus contribute to the range of the stock-tank original oil in place volume (STOOIP).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
静态不确定性下的地震反演积分
资源估算一直是油气行业面临的主要挑战。用于此估计的不确定性分为结构不确定性、静态不确定性和动态不确定性,每个组成部分都可能对最终的资源估计产生重大影响。本文针对地震反演中的静态不确定性分量,提出了一种从确定性反演结果中导出随机多实现的工作流程。为了验证该方法,首先将所描述的方法与在真实数据集(澳大利亚深海浊积岩)上进行的弹性特性随机地震反演进行了比较。在此基础上,提出了岩震属性的概化工作流程,以约束地质模型的充填。结果表明,确定性反演结果可以集成到全局不确定性工作流中,从而有助于确定储罐原始原地油体积(stoip)的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Recurrent Architectures for Seismic Tomography UK Geoenergy Observatories: New Facilities to Understand the Future Energy Challenges A New Approach for Determining Optimum Location of Injection Wells Using an Efficient Dynamic Based Method Microseismic Magnitudes: Challenges in Determining the Correct Moment and Operating Regulatory Frameworks Machine-Learning in Oil and Gas Exploration: A New Approach to Geological Risk Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1