Deep Recurrent Architectures for Seismic Tomography

A. Adler, M. Araya-Polo, T. Poggio
{"title":"Deep Recurrent Architectures for Seismic Tomography","authors":"A. Adler, M. Araya-Polo, T. Poggio","doi":"10.3997/2214-4609.201901512","DOIUrl":null,"url":null,"abstract":"This paper introduces novel deep recurrent neural network architectures for Velocity Model Building (VMB), which is beyond what Araya-Polo et al 2018 pioneered with the Machine Learning-based seismic tomography built with convolutional non-recurrent neural network. Our investigation includes the utilization of basic recurrent neural network (RNN) cells, as well as Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) cells. Performance evaluation reveals that salt bodies are consistently predicted more accurately by GRU and LSTM-based architectures, as compared to non-recurrent architectures. The results take us a step closer to the final goal of a reliable fully Machine Learning-based tomography from pre-stack data, which when achieved will reduce the VMB turnaround from weeks to days.","PeriodicalId":6840,"journal":{"name":"81st EAGE Conference and Exhibition 2019","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"81st EAGE Conference and Exhibition 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201901512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

This paper introduces novel deep recurrent neural network architectures for Velocity Model Building (VMB), which is beyond what Araya-Polo et al 2018 pioneered with the Machine Learning-based seismic tomography built with convolutional non-recurrent neural network. Our investigation includes the utilization of basic recurrent neural network (RNN) cells, as well as Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) cells. Performance evaluation reveals that salt bodies are consistently predicted more accurately by GRU and LSTM-based architectures, as compared to non-recurrent architectures. The results take us a step closer to the final goal of a reliable fully Machine Learning-based tomography from pre-stack data, which when achieved will reduce the VMB turnaround from weeks to days.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
地震层析成像的深层循环结构
本文介绍了用于速度模型构建(VMB)的新型深度递归神经网络架构,这超出了Araya-Polo等人2018年率先使用卷积非递归神经网络构建的基于机器学习的地震断层扫描。我们的研究包括使用基本循环神经网络(RNN)细胞,以及长短期记忆(LSTM)和门控循环单元(GRU)细胞。性能评估表明,与非循环体系结构相比,基于GRU和lstm的体系结构能够更准确地预测盐体。结果使我们更接近于从堆栈前数据中获得可靠的完全基于机器学习的断层扫描的最终目标,这一目标实现后将把VMB周转时间从几周减少到几天。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Recurrent Architectures for Seismic Tomography UK Geoenergy Observatories: New Facilities to Understand the Future Energy Challenges A New Approach for Determining Optimum Location of Injection Wells Using an Efficient Dynamic Based Method Microseismic Magnitudes: Challenges in Determining the Correct Moment and Operating Regulatory Frameworks Machine-Learning in Oil and Gas Exploration: A New Approach to Geological Risk Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1