Improvement of efficiency of pyrolysis processing of municipal solid waste

R. Gabitov, O. Kolibaba, D. Dolinin, M.M. Chizhikova
{"title":"Improvement of efficiency of pyrolysis processing of municipal solid waste","authors":"R. Gabitov, O. Kolibaba, D. Dolinin, M.M. Chizhikova","doi":"10.17588/2072-2672.2023.2.019-027","DOIUrl":null,"url":null,"abstract":"The disposal of waste by direct combustion method is prohibited in the Russian Federation due to the negative impact on the environment. An alternative option is solid waste pyrolysis technology, which allows not only to significantly reduce the amount of waste that requires disposal, but also to obtain various types of energy carriers. Existing installations allow recycling waste with humidity up to 30–35 %. An increase of humidity over 40 % requires additional energy sources for the drying process. To increase the efficiency of waste recycling by pyrolysis, it is necessary to improve the technology and to design an energy-efficient waste disposal plant. The use of the heat of combustion products in the heat exchanger to heat the air going into the drying chamber will increase the range of processing of wet waste. To determine the efficiency of the furnace for thermal waste disposal, the method of material and thermal balance is used. It allows determining the efficiency of the installation and selecting its operating mode with its maximum value. The paper proposes a new design of a waste disposal furnace with separate drying and pyrolysis chambers, as well as a mathematical model based on the equations of thermal and material balance. The design feature of the installation allows you to organize the controlled drying of wet waste and reduce losses with combustion products by using a heat exchanger for air heating. The proposed installation allows the waste recycling process to be carried out at a relative humidity of 0 to 60 % without additional energy sources. The efficiency of the waste varies from 61,5 to 80 % when the plant is operating on dry waste and from 42 to 62 % when operating on wet waste.","PeriodicalId":23635,"journal":{"name":"Vestnik IGEU","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik IGEU","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17588/2072-2672.2023.2.019-027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The disposal of waste by direct combustion method is prohibited in the Russian Federation due to the negative impact on the environment. An alternative option is solid waste pyrolysis technology, which allows not only to significantly reduce the amount of waste that requires disposal, but also to obtain various types of energy carriers. Existing installations allow recycling waste with humidity up to 30–35 %. An increase of humidity over 40 % requires additional energy sources for the drying process. To increase the efficiency of waste recycling by pyrolysis, it is necessary to improve the technology and to design an energy-efficient waste disposal plant. The use of the heat of combustion products in the heat exchanger to heat the air going into the drying chamber will increase the range of processing of wet waste. To determine the efficiency of the furnace for thermal waste disposal, the method of material and thermal balance is used. It allows determining the efficiency of the installation and selecting its operating mode with its maximum value. The paper proposes a new design of a waste disposal furnace with separate drying and pyrolysis chambers, as well as a mathematical model based on the equations of thermal and material balance. The design feature of the installation allows you to organize the controlled drying of wet waste and reduce losses with combustion products by using a heat exchanger for air heating. The proposed installation allows the waste recycling process to be carried out at a relative humidity of 0 to 60 % without additional energy sources. The efficiency of the waste varies from 61,5 to 80 % when the plant is operating on dry waste and from 42 to 62 % when operating on wet waste.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
城市生活垃圾热解处理效率的提高
由于对环境的负面影响,俄罗斯联邦禁止用直接燃烧法处置废物。另一种选择是固体废物热解技术,该技术不仅可以显著减少需要处理的废物数量,而且可以获得各种类型的能量载体。现有的设备允许在湿度高达30 - 35%的情况下回收废物。湿度增加超过40%需要额外的能源用于干燥过程。为了提高垃圾热解回收利用的效率,必须改进热解技术,设计高效节能的垃圾处理厂。利用热交换器中燃烧产物的热量来加热进入干燥室的空气,将增加湿废物的处理范围。采用物料与热平衡的方法,确定了炉体处理废热的效率。它允许确定安装效率,并以其最大值选择其运行模式。本文提出了一种新的垃圾处理炉的设计方案,并建立了基于热平衡方程和物料平衡方程的数学模型。该装置的设计特点允许您通过使用热交换器进行空气加热来组织湿废物的受控干燥,并减少燃烧产物的损失。拟议的装置允许废物回收过程在相对湿度为0至60%的情况下进行,而无需额外的能源。当工厂处理干废物时,废物的效率从61.5%到80%不等,当处理湿废物时,废物的效率从42%到62%不等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of chemical composition of biomass on agglomeration process in fluidized bed of boiler E-75-3,9-440 DFT Synthesis of a robust control system for a manipulation robot with polynomial controllers based on Gramian method Application of submodeling technique to reduce time spent modeling remote magnetic field sensors Solution of inverse heat transfer problem in condenser of a turbine unit with built-in heating unit Increasing energy efficiency of gas piston TPP through integrated use of thermal secondary energy resources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1