Open the Black Box – Visualising CNN to Understand Its Decisions on Road Network Performance Level

IF 0.8 4区 工程技术 Q4 TRANSPORTATION SCIENCE & TECHNOLOGY Promet-Traffic & Transportation Pub Date : 2022-07-19 DOI:10.7307/ptt.v34i4.4037
Junxian Li, Zhizhou Wu, Zhoubiao Shen
{"title":"Open the Black Box – Visualising CNN to Understand Its Decisions on Road Network Performance Level","authors":"Junxian Li, Zhizhou Wu, Zhoubiao Shen","doi":"10.7307/ptt.v34i4.4037","DOIUrl":null,"url":null,"abstract":"Visualisation helps explain the operating mechanisms of deep learning models, but its applications are rarely seen in traffic analysis. This paper employs a convolu-tional neural network (CNN) to evaluate road network performance level (NPL) and visualises the model to en-lighten how it works. A dataset of an urban road network covering a whole year is used to produce performance maps to train a CNN. In this process, a pretrained network is introduced to overcome the common issue of inadequa-cy of data in transportation research. Gradient weighted class activation mapping (Grad-CAM) is applied to vi-sualise the CNN, and four visualisation experiments are conducted. The results illustrate that the CNN focuses on different areas when it identifies the road network as dif-ferent NPLs, implying which region contributes the most to the deteriorating performance. There are particular visual patterns when the road network transits from one NPL to another, which may help performance prediction. Misclassified samples are analysed to determine how the CNN fails to make the right decisions, exposing the model’s deficiencies. The results indicate visualisation’s potential to contribute to comprehensive management strategies and effective model improvement.","PeriodicalId":54546,"journal":{"name":"Promet-Traffic & Transportation","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Promet-Traffic & Transportation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7307/ptt.v34i4.4037","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Visualisation helps explain the operating mechanisms of deep learning models, but its applications are rarely seen in traffic analysis. This paper employs a convolu-tional neural network (CNN) to evaluate road network performance level (NPL) and visualises the model to en-lighten how it works. A dataset of an urban road network covering a whole year is used to produce performance maps to train a CNN. In this process, a pretrained network is introduced to overcome the common issue of inadequa-cy of data in transportation research. Gradient weighted class activation mapping (Grad-CAM) is applied to vi-sualise the CNN, and four visualisation experiments are conducted. The results illustrate that the CNN focuses on different areas when it identifies the road network as dif-ferent NPLs, implying which region contributes the most to the deteriorating performance. There are particular visual patterns when the road network transits from one NPL to another, which may help performance prediction. Misclassified samples are analysed to determine how the CNN fails to make the right decisions, exposing the model’s deficiencies. The results indicate visualisation’s potential to contribute to comprehensive management strategies and effective model improvement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
打开黑匣子-可视化CNN以了解其对道路网络性能水平的决定
可视化有助于解释深度学习模型的运行机制,但在流量分析中很少看到它的应用。本文采用卷积神经网络(CNN)来评估道路网络性能水平(NPL),并将模型可视化以阐明其工作原理。使用覆盖一整年的城市道路网络数据集生成性能图来训练CNN。在此过程中,引入预训练网络来克服交通研究中数据不足的普遍问题。采用梯度加权类激活映射(Gradient weighted class activation mapping, Grad-CAM)对CNN进行了可视化处理,并进行了4次可视化实验。结果表明,当CNN将路网识别为不同的不良贷款时,它会关注不同的区域,这意味着哪个区域对恶化的性能贡献最大。当路网从一个不良资产转移到另一个不良资产时,有一些特殊的视觉模式,这可能有助于性能预测。对错误分类的样本进行分析,以确定CNN如何无法做出正确的决策,从而暴露出模型的缺陷。结果表明,可视化有助于综合管理策略和有效的模型改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Promet-Traffic & Transportation
Promet-Traffic & Transportation 工程技术-运输科技
CiteScore
1.90
自引率
20.00%
发文量
62
审稿时长
3 months
期刊介绍: This scientific journal publishes scientific papers in the area of technical sciences, field of transport and traffic technology. The basic guidelines of the journal, which support the mission - promotion of transport science, are: relevancy of published papers and reviewer competency, established identity in the print and publishing profile, as well as other formal and informal details. The journal organisation consists of the Editorial Board, Editors, Reviewer Selection Committee and the Scientific Advisory Committee. The received papers are subject to peer review in accordance with the recommendations for international scientific journals. The papers published in the journal are placed in sections which explain their focus in more detail. The sections are: transportation economy, information and communication technology, intelligent transport systems, human-transport interaction, intermodal transport, education in traffic and transport, traffic planning, traffic and environment (ecology), traffic on motorways, traffic in the cities, transport and sustainable development, traffic and space, traffic infrastructure, traffic policy, transport engineering, transport law, safety and security in traffic, transport logistics, transport technology, transport telematics, internal transport, traffic management, science in traffic and transport, traffic engineering, transport in emergency situations, swarm intelligence in transportation engineering. The Journal also publishes information not subject to review, and classified under the following headings: book and other reviews, symposia, conferences and exhibitions, scientific cooperation, anniversaries, portraits, bibliographies, publisher information, news, etc.
期刊最新文献
Selecting the Flexible Last-Mile Delivery Models Using Multicriteria Decision-Making Passenger Queuing Analysis Method of Security Inspection and Ticket-Checking Area without Archway Metal Detector in Metro Stations Environmental Sustainability and Freight Transport Performance in the EU – An Autoregressive Conditional Heteroscedasticity (ARCH) Model Analysis Use of Structural Equation Modelling and Neural Network to Analyse Shared Parking Choice Behaviour Prediction of Electric Vehicle Energy Consumption in an Intelligent and Connected Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1