Design and application of double-parallelograms-based tuned mass damper for low-frequency vibration absorption

IF 1.9 4区 工程技术 Q2 ACOUSTICS Journal of Vibration and Acoustics-Transactions of the Asme Pub Date : 2022-04-01 DOI:10.1115/1.4054255
Wenshuo Ma, Jingjun Yu, Yiqing Yang
{"title":"Design and application of double-parallelograms-based tuned mass damper for low-frequency vibration absorption","authors":"Wenshuo Ma, Jingjun Yu, Yiqing Yang","doi":"10.1115/1.4054255","DOIUrl":null,"url":null,"abstract":"\n Low-frequency vibration suppression is challenging in practical engineering problems due to the harsh requirement for vibration reduction devices, which requires constant low stiffness over a wide amplitude range. A passive tuned mass damper (TMD) composed of a positive stiffness module (PSM) in parallel with a negative stiffness module (NSM) is proposed, which are implemented by serial double-parallelograms (DP) and parallel-DP, respectively. The PSM has a large deflection range of constant stiffness for a given beam length, while the NSM offers negative stiffness within certain deflection range when applied with axial load above the critical threshold. Based on the closed-form modeling of the stiffness modules using the beam constraint model (BCM), the design and analysis of the PSM and NSM are carried out considering the nonlinearity under large deflections. Afterward, with the structure of TMD implemented, its stiffness characteristics and low-frequency tunability are experimentally validated. Finally, the application on a suspension bridge model shows that a maximum of 29.8 dB vibration reduction of low-frequency mode is attained within the frequency range of interest. The proposed TMD well attenuates the vibrations excited by sweep sinusoidal and harmonic excitations under prespecified threshold levels of acceleration.","PeriodicalId":49957,"journal":{"name":"Journal of Vibration and Acoustics-Transactions of the Asme","volume":"54 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Acoustics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4054255","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Low-frequency vibration suppression is challenging in practical engineering problems due to the harsh requirement for vibration reduction devices, which requires constant low stiffness over a wide amplitude range. A passive tuned mass damper (TMD) composed of a positive stiffness module (PSM) in parallel with a negative stiffness module (NSM) is proposed, which are implemented by serial double-parallelograms (DP) and parallel-DP, respectively. The PSM has a large deflection range of constant stiffness for a given beam length, while the NSM offers negative stiffness within certain deflection range when applied with axial load above the critical threshold. Based on the closed-form modeling of the stiffness modules using the beam constraint model (BCM), the design and analysis of the PSM and NSM are carried out considering the nonlinearity under large deflections. Afterward, with the structure of TMD implemented, its stiffness characteristics and low-frequency tunability are experimentally validated. Finally, the application on a suspension bridge model shows that a maximum of 29.8 dB vibration reduction of low-frequency mode is attained within the frequency range of interest. The proposed TMD well attenuates the vibrations excited by sweep sinusoidal and harmonic excitations under prespecified threshold levels of acceleration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双平行四边形调谐质量减振器的设计与应用
低频振动抑制在实际工程问题中具有挑战性,因为对减振装置的要求苛刻,要求在宽振幅范围内保持低刚度。提出了一种由正刚度模块(PSM)与负刚度模块(NSM)并联组成的被动调谐质量阻尼器(TMD),分别采用串联双平行四边形(DP)和平行四边形(parallel-DP)实现。当轴向载荷大于临界阈值时,PSM在给定梁长下具有较大的恒刚度挠度范围,而NSM在一定挠度范围内具有负刚度。在采用梁约束模型(BCM)对刚度模块进行封闭建模的基础上,对考虑大挠度非线性的PSM和NSM进行了设计和分析。然后,在实现TMD结构的基础上,对其刚度特性和低频可调性进行了实验验证。最后,在悬索桥模型上的应用表明,在感兴趣的频率范围内,低频模式的最大减振幅度为29.8 dB。在预先设定的加速度阈值水平下,所提出的TMD可以很好地衰减由扫描正弦和谐波激励引起的振动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
11.80%
发文量
79
审稿时长
7 months
期刊介绍: The Journal of Vibration and Acoustics is sponsored jointly by the Design Engineering and the Noise Control and Acoustics Divisions of ASME. The Journal is the premier international venue for publication of original research concerning mechanical vibration and sound. Our mission is to serve researchers and practitioners who seek cutting-edge theories and computational and experimental methods that advance these fields. Our published studies reveal how mechanical vibration and sound impact the design and performance of engineered devices and structures and how to control their negative influences. Vibration of continuous and discrete dynamical systems; Linear and nonlinear vibrations; Random vibrations; Wave propagation; Modal analysis; Mechanical signature analysis; Structural dynamics and control; Vibration energy harvesting; Vibration suppression; Vibration isolation; Passive and active damping; Machinery dynamics; Rotor dynamics; Acoustic emission; Noise control; Machinery noise; Structural acoustics; Fluid-structure interaction; Aeroelasticity; Flow-induced vibration and noise.
期刊最新文献
Bone conduction: A linear viscoelastic mixed lumped-continuum model for the human skin in the acoustic frequency range A Multiple-Burner Approach to Passive Control of Multiple Longitudinal Acoustic Instabilities in Combustors Widening the Band Gaps of Hourglass Lattice Truss Core Sandwich Structures for Broadband Vibration Suppression Material Extrusion on an Ultrasonic Air Bed for 3D Printing Nonlinear Energy Transfer of a Spar-Floater System using the Inerter Pendulum Vibration Absorber
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1