Wind Tunnel Experiment on the Aerodynamic Interaction Between Vertical Axis Wind Turbine Pair

Hao Su, Haoran Meng, Jia Guo, T. Qu, Li-ping Lei
{"title":"Wind Tunnel Experiment on the Aerodynamic Interaction Between Vertical Axis Wind Turbine Pair","authors":"Hao Su, Haoran Meng, Jia Guo, T. Qu, Li-ping Lei","doi":"10.1115/fedsm2021-65280","DOIUrl":null,"url":null,"abstract":"\n Wind energy has attracted worldwide attention as a pollution-free and widely distributed renewable energy source. Increasing the power density by optimizing the arrangement of wind turbines has been a popular field of research in recent years. In the present work, a systematic study on the influence of array configuration on vertical axis wind turbines is made through wind tunnel experiments. Firstly, the power performance of an isolated vertical axis wind turbine at different tip speed ratios is tested as a benchmark of comparison. Multiple situations of two-turbine configurations are then tested and the results are compared with the isolated wind turbine. The power coefficient of the turbine pair increases by 34% when the turbines are 2.4 rotor diameters apart and rotate in the same direction. In the counter-rotating co-leeward case, it is demonstrated that the turbine pairs will have a positive effect on each other when they are separated by 2.1 rotor diameters to 2.4 rotor diameters. The lateral spacing between the counter-rotating co-windward turbine pair should be greater than 1.5 rotor diameters to avoid turbulence interference between the rotors.","PeriodicalId":23636,"journal":{"name":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2021-65280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wind energy has attracted worldwide attention as a pollution-free and widely distributed renewable energy source. Increasing the power density by optimizing the arrangement of wind turbines has been a popular field of research in recent years. In the present work, a systematic study on the influence of array configuration on vertical axis wind turbines is made through wind tunnel experiments. Firstly, the power performance of an isolated vertical axis wind turbine at different tip speed ratios is tested as a benchmark of comparison. Multiple situations of two-turbine configurations are then tested and the results are compared with the isolated wind turbine. The power coefficient of the turbine pair increases by 34% when the turbines are 2.4 rotor diameters apart and rotate in the same direction. In the counter-rotating co-leeward case, it is demonstrated that the turbine pairs will have a positive effect on each other when they are separated by 2.1 rotor diameters to 2.4 rotor diameters. The lateral spacing between the counter-rotating co-windward turbine pair should be greater than 1.5 rotor diameters to avoid turbulence interference between the rotors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
垂直轴风力机副气动相互作用的风洞试验
风能作为一种无污染、分布广泛的可再生能源,受到了世界各国的广泛关注。通过优化风力机布局来提高功率密度是近年来的研究热点。本文通过风洞试验,系统地研究了阵列构型对垂直轴风力机的影响。首先,对孤立式垂直轴风力机在不同叶尖速比下的功率性能进行了测试,作为对比基准。然后对双机配置的多种情况进行了测试,并与孤立风力机进行了比较。当转子直径为2.4时,在同一方向旋转时,涡轮副的功率系数提高了34%。在反向旋转的共背风情况下,当转子直径为2.1 ~ 2.4转子直径时,涡轮对相互之间会产生积极的影响。为避免转子间的湍流干扰,对转共向涡轮副的横向间距应大于1.5转子直径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fluid Dynamics and Contact Stress on Hard Sealing Surface Analysis of LNG Cryogenic Ball Valve 0D Modeling of Fuel Tank for Vapor Generation Impact of Urban Microclimate on Air Conditioning Energy Consumption Using Different Convective Heat Transfer Coefficient Correlations Available in Building Energy Simulation Tools Study on Overall Design of a Vertical Take-Off and Landing Unmanned Aerial Vehicle Powered by Electric Ducted Fans Influence of the Topological Structures of the Nose of High-Speed Maglev Train on Aerodynamic Performances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1