Time-series prediction based on pattern classification

Z Zeng, H Yan, A.M.N Fu
{"title":"Time-series prediction based on pattern classification","authors":"Z Zeng,&nbsp;H Yan,&nbsp;A.M.N Fu","doi":"10.1016/S0954-1810(00)00026-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a new time-series predication method is proposed based on pattern analysis. In this method, basic patterns and their probabilities are extracted from a time series. A probabilistic relaxation method is employed to classify the probability vectors of the basic patterns. In order to verify the effectiveness of the proposed method, several experiments are carried out on a simulation signal and real data. The results show that the proposed method has advantages over existing methods in some applications.</p></div>","PeriodicalId":100123,"journal":{"name":"Artificial Intelligence in Engineering","volume":"15 1","pages":"Pages 61-69"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0954-1810(00)00026-1","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0954181000000261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, a new time-series predication method is proposed based on pattern analysis. In this method, basic patterns and their probabilities are extracted from a time series. A probabilistic relaxation method is employed to classify the probability vectors of the basic patterns. In order to verify the effectiveness of the proposed method, several experiments are carried out on a simulation signal and real data. The results show that the proposed method has advantages over existing methods in some applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模式分类的时间序列预测
本文提出了一种新的基于模式分析的时间序列预测方法。在该方法中,从时间序列中提取基本模式及其概率。采用概率松弛法对基本模式的概率向量进行分类。为了验证该方法的有效性,在仿真信号和实际数据上进行了多次实验。结果表明,该方法在某些应用中优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Volume Contents Simulating behaviors of human situation awareness under high workloads Emergent synthesis of motion patterns for locomotion robots Synthesis and emergence — research overview Concept of self-reconfigurable modular robotic system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1