{"title":"A multi-state merging based analytical model for an operation design domain of autonomous vehicles in work zones on two-lane highways","authors":"Qing Tang , Xianbiao Hu","doi":"10.1080/15472450.2022.2130697","DOIUrl":null,"url":null,"abstract":"<div><p>As a special application of connected and automated vehicles (CAVs), the Autonomous Truck Mounted Attenuator (ATMA) vehicle system is promoted to reduce fatalities in work zone locations. In this manuscript, we focus on the Operational Design Domain (ODD) problem of two-lane highways, i.e., under what traffic conditions should an ATMA be deployed. Due to the dramatic speed difference between ATMA vehicles and general vehicles, a queue will be formed, leading to a percent-time-spent-following (PTSF) increase during maintenance. General vehicles in the queue will assess a gap on the opposite lane to perform a passing maneuver, which is broken down into multi-stage merging behavior. As such, an analytical model is first made, based on queuing theory in which the arrival rate and service rate are analyzed to estimate the PTSF. In this way, the linkage between annual average daily traffic (AADT) and level of service (LOS) is analytically established. Then, the proposed model is validated by comparing the estimated PTSF with that of the Highway Capacity Manual (HCM) values. The comparison results show that the mean error is 9.58%, and the mean absolute error is 12.36%, which demonstrate that the developed model is able to generate satisfactory results when compared with the HCM model. Numeric analysis also shows that roadway performance is sensitive to the K factor and D factor, as well as the operating speed of an ATMA. If LOS = C is a desirable design objective, a good AADT threshold to use would be around 11,000 vehicles per day.</p></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"28 3","pages":"Pages 372-385"},"PeriodicalIF":2.8000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245023000233","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
As a special application of connected and automated vehicles (CAVs), the Autonomous Truck Mounted Attenuator (ATMA) vehicle system is promoted to reduce fatalities in work zone locations. In this manuscript, we focus on the Operational Design Domain (ODD) problem of two-lane highways, i.e., under what traffic conditions should an ATMA be deployed. Due to the dramatic speed difference between ATMA vehicles and general vehicles, a queue will be formed, leading to a percent-time-spent-following (PTSF) increase during maintenance. General vehicles in the queue will assess a gap on the opposite lane to perform a passing maneuver, which is broken down into multi-stage merging behavior. As such, an analytical model is first made, based on queuing theory in which the arrival rate and service rate are analyzed to estimate the PTSF. In this way, the linkage between annual average daily traffic (AADT) and level of service (LOS) is analytically established. Then, the proposed model is validated by comparing the estimated PTSF with that of the Highway Capacity Manual (HCM) values. The comparison results show that the mean error is 9.58%, and the mean absolute error is 12.36%, which demonstrate that the developed model is able to generate satisfactory results when compared with the HCM model. Numeric analysis also shows that roadway performance is sensitive to the K factor and D factor, as well as the operating speed of an ATMA. If LOS = C is a desirable design objective, a good AADT threshold to use would be around 11,000 vehicles per day.
期刊介绍:
The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new.
The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption.
The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.