{"title":"Non-toxic, colloidal ZnS-AgInS2 nanoparticles for organic-inorganic hybrid photovoltaics","authors":"E. Sanehira, C. Luscombe, Lih Y. Lin","doi":"10.1109/PVSC.2014.6925211","DOIUrl":null,"url":null,"abstract":"Non-toxic, colloidal ZnS-AgInS2 nanoparticles are synthesized and characterized for organic-inorganic hybrid photovoltaic applications. The optical properties of these particles are easily tuned by changing the chemical composition of the nanoparticle. Additionally, the photoluminescence quantum yield of 37.5% suggests this material is a promising candidate for optoelectronic devices. A comparison of the photoluminescence spectra of ZnS-AgInS2 nanoparticle and poly-3(hexylthiophene) blends to poly-3(hexylthiophene) neat indicates charge transfer between the nanoparticle and the polymer occurs in solution. Photovoltaic devices were fabricated using blends of ZnS-AgInS2 nanoparticles, poly-3(hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester, yielding an average power conversion efficiency of 2.3%.","PeriodicalId":6649,"journal":{"name":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","volume":"35 1","pages":"1547-1552"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2014.6925211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Non-toxic, colloidal ZnS-AgInS2 nanoparticles are synthesized and characterized for organic-inorganic hybrid photovoltaic applications. The optical properties of these particles are easily tuned by changing the chemical composition of the nanoparticle. Additionally, the photoluminescence quantum yield of 37.5% suggests this material is a promising candidate for optoelectronic devices. A comparison of the photoluminescence spectra of ZnS-AgInS2 nanoparticle and poly-3(hexylthiophene) blends to poly-3(hexylthiophene) neat indicates charge transfer between the nanoparticle and the polymer occurs in solution. Photovoltaic devices were fabricated using blends of ZnS-AgInS2 nanoparticles, poly-3(hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester, yielding an average power conversion efficiency of 2.3%.