Thermodynamically consistent modeling of two-phase incompressible flows in heterogeneous and fractured media

IF 1.8 4区 工程技术 Q4 ENERGY & FUELS Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles Pub Date : 2020-06-05 DOI:10.2516/ogst/2020024
Huicai Gao, Jisheng Kou, Shuyu Sun, Xiuhua Wang
{"title":"Thermodynamically consistent modeling of two-phase incompressible flows in heterogeneous and fractured media","authors":"Huicai Gao, Jisheng Kou, Shuyu Sun, Xiuhua Wang","doi":"10.2516/ogst/2020024","DOIUrl":null,"url":null,"abstract":"Numerical modeling of two-phase flows in heterogeneous and fractured media is of great interest in petroleum reservoir engineering. The classical model for two-phase flows in porous media is not completely thermodynamically consistent since the energy reconstructed from the capillary pressure does not involve the ideal fluid energy of both phases and attraction effect between two phases. On the other hand, the saturation may be discontinuous in heterogeneous and fractured media, and thus the saturation gradient may be not well defined. Consequently, the classical phase-field models can not be applied due to the use of diffuse interfaces. In this paper, we propose a new thermodynamically consistent energy-based model for two-phase flows in heterogeneous and fractured media, which is free of the gradient energy. Meanwhile, the model inherits the key features of the traditional models of two-phase flows in porous media, including relative permeability, volumetric phase velocity and capillarity effect. To characterize the capillarity effect, a logarithmic energy potential is proposed as the free energy function, which is more realistic than the commonly used double well potential. The model combines with the discrete fracture model to describe two-phase flows in fractured media. The popularly used implicit pressure explicit saturation method is used to simulate the model. Finally, the experimental verification of the model and numerical simulation results are provided.","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/ogst/2020024","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 8

Abstract

Numerical modeling of two-phase flows in heterogeneous and fractured media is of great interest in petroleum reservoir engineering. The classical model for two-phase flows in porous media is not completely thermodynamically consistent since the energy reconstructed from the capillary pressure does not involve the ideal fluid energy of both phases and attraction effect between two phases. On the other hand, the saturation may be discontinuous in heterogeneous and fractured media, and thus the saturation gradient may be not well defined. Consequently, the classical phase-field models can not be applied due to the use of diffuse interfaces. In this paper, we propose a new thermodynamically consistent energy-based model for two-phase flows in heterogeneous and fractured media, which is free of the gradient energy. Meanwhile, the model inherits the key features of the traditional models of two-phase flows in porous media, including relative permeability, volumetric phase velocity and capillarity effect. To characterize the capillarity effect, a logarithmic energy potential is proposed as the free energy function, which is more realistic than the commonly used double well potential. The model combines with the discrete fracture model to describe two-phase flows in fractured media. The popularly used implicit pressure explicit saturation method is used to simulate the model. Finally, the experimental verification of the model and numerical simulation results are provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非均质和裂隙介质中两相不可压缩流动的热力学一致性建模
非均质裂缝介质中两相流的数值模拟在油藏工程中具有重要意义。经典的多孔介质中两相流动模型并不完全热力学一致,因为毛细管压力重构的能量不包括两相的理想流体能量和两相之间的吸引效应。另一方面,在非均质和裂缝介质中,饱和度可能是不连续的,因此饱和度梯度可能不是很明确。因此,由于漫射界面的使用,经典相场模型不能适用。本文提出了一种新的基于热力学一致能量的非均质破裂介质中两相流模型,该模型不考虑梯度能。同时,该模型继承了传统多孔介质两相流模型的主要特征,包括相对渗透率、体积相速度和毛细效应。为了描述毛细效应,提出了一个对数能量势作为自由能函数,它比常用的双阱势更真实。该模型结合离散裂缝模型来描述裂缝介质中的两相流动。采用常用的隐式压力显式饱和度法对模型进行了模拟。最后给出了模型的实验验证和数值仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition. OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases. The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month. Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.
期刊最新文献
Preliminary analyses of synthetic carbonate plugs: consolidation, petrophysical and wettability properties Analysis of well testing results for single phase flow in reservoirs with percolation structure Digital twin based reference architecture for petrochemical monitoring and fault diagnosis Identification of reservoir fractures on FMI image logs using Canny and Sobel edge detection algorithms Ensemble-based method with combined fractional flow model for waterflooding optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1