An improved sliding-mode observer for IPM drives with a new phase delay mitigation algorithm based on extended electromotive force model

Zhuangyao Tang, B. Akin
{"title":"An improved sliding-mode observer for IPM drives with a new phase delay mitigation algorithm based on extended electromotive force model","authors":"Zhuangyao Tang, B. Akin","doi":"10.1109/IEMDC.2015.7409159","DOIUrl":null,"url":null,"abstract":"This paper presents a new sliding-mode observer (SMO) for interior permanent-magnet motors (IPM) to be utilized in sensorless field-oriented control (FOC) algorithms. Due to IPM's rotor saliency, the traditional back electromotive force (back-emf) model for surface-mount permanent motors (SPM) cannot be used in IPM observers directly. In order to address this problem, the extended electromotive force (EEMF) model is adopted for observer design. Unlike many other EEMF model based SMOs, the phase delay mitigation algorithm (PDMA) integrated in the proposed observer significantly reduces steady-state estimation error while maintaining low-pass filter's dynamic performance. The simple structure makes the proposed observer an ideal candidate for cost-sensitive applications which guarantees satisfactory performance and efficiency. Theoretical analysis, simulation and experimental results are provided to validate the fidelity of the proposed SMO.","PeriodicalId":6477,"journal":{"name":"2015 IEEE International Electric Machines & Drives Conference (IEMDC)","volume":"8 1","pages":"846-852"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electric Machines & Drives Conference (IEMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMDC.2015.7409159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a new sliding-mode observer (SMO) for interior permanent-magnet motors (IPM) to be utilized in sensorless field-oriented control (FOC) algorithms. Due to IPM's rotor saliency, the traditional back electromotive force (back-emf) model for surface-mount permanent motors (SPM) cannot be used in IPM observers directly. In order to address this problem, the extended electromotive force (EEMF) model is adopted for observer design. Unlike many other EEMF model based SMOs, the phase delay mitigation algorithm (PDMA) integrated in the proposed observer significantly reduces steady-state estimation error while maintaining low-pass filter's dynamic performance. The simple structure makes the proposed observer an ideal candidate for cost-sensitive applications which guarantees satisfactory performance and efficiency. Theoretical analysis, simulation and experimental results are provided to validate the fidelity of the proposed SMO.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于扩展电动势模型的相位延迟缓解算法的IPM驱动器滑模观测器的改进
本文提出了一种新的滑模观测器(SMO),用于内部永磁电机的无传感器场定向控制(FOC)算法。由于永磁电机转子的显著性,表面贴装永磁电机的传统反电动势(back-emf)模型不能直接用于永磁电机观测器。为了解决这一问题,采用扩展电动势模型进行观测器设计。与许多其他基于EEMF模型的mos不同,该观测器中集成的相位延迟缓解算法(PDMA)在保持低通滤波器动态性能的同时显著降低了稳态估计误差。简单的结构使所提出的观测器成为成本敏感应用的理想候选者,保证了令人满意的性能和效率。理论分析、仿真和实验结果验证了该方法的保真度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Free vibration analysis of a large hydroelectric generator and computation of radial electromagnetic exciting forces Multi-objective optimization of an actively shielded superconducting field winding: Pole count study Brushless doubly-fed induction machines: Torque ripple A dynamic pole-phase modulation induction machine model Tri-port converter for flexible energy control of PV-fed electric vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1