Investigating the Impact of Growth Temperatures on the ZnO Nanorods Properties Grown with Simplest Spray Technique

M. K. Jaqsi, A. Kareem, A. Abdulrahman
{"title":"Investigating the Impact of Growth Temperatures on the ZnO Nanorods Properties Grown with Simplest Spray Technique","authors":"M. K. Jaqsi, A. Kareem, A. Abdulrahman","doi":"10.25271/sjuoz.2023.11.1.1072","DOIUrl":null,"url":null,"abstract":"The simplest chemical spray approach has been used to grow the zinc oxide (ZnO) nanorods (NRs). For spraying, a basic perfume automizer was employed. Additionally, utilizing a variety of characterization techniques, the effects of various growth temperatures on the ZnO NRs properties were looked into and evaluated. The results of the investigation demonstrated that the growing temperature significantly affects all-characteristics properties of the ZnO NRs fabricated using the most straightforward spray approach. At various growth temperatures, the average diameters (size) and average crystalline sizes along with (002) of grown ZnO NRs were in the ranges of (47.89-51.29) nm and (44.128-52.565) nm, respectively. The hexagonal wurtzite plane was the optimum direction for ZnO NRs to be oriented, and as growth temperatures are raised. The absorption edge changed toward longer wavelengths and as growth temperature increased, the average absorbance also increased. The optical analysis reveals that the direct Eg. of the produced ZnO NRs lies in the (3.182-3.250) eV range.","PeriodicalId":21627,"journal":{"name":"Science Journal of University of Zakho","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Journal of University of Zakho","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25271/sjuoz.2023.11.1.1072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The simplest chemical spray approach has been used to grow the zinc oxide (ZnO) nanorods (NRs). For spraying, a basic perfume automizer was employed. Additionally, utilizing a variety of characterization techniques, the effects of various growth temperatures on the ZnO NRs properties were looked into and evaluated. The results of the investigation demonstrated that the growing temperature significantly affects all-characteristics properties of the ZnO NRs fabricated using the most straightforward spray approach. At various growth temperatures, the average diameters (size) and average crystalline sizes along with (002) of grown ZnO NRs were in the ranges of (47.89-51.29) nm and (44.128-52.565) nm, respectively. The hexagonal wurtzite plane was the optimum direction for ZnO NRs to be oriented, and as growth temperatures are raised. The absorption edge changed toward longer wavelengths and as growth temperature increased, the average absorbance also increased. The optical analysis reveals that the direct Eg. of the produced ZnO NRs lies in the (3.182-3.250) eV range.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究生长温度对最简单喷雾法生长ZnO纳米棒性能的影响
采用最简单的化学喷雾方法制备氧化锌纳米棒。喷雾时,使用基本的香水自动喷雾器。此外,利用各种表征技术,研究和评估了不同生长温度对ZnO核磁共振材料性能的影响。研究结果表明,生长温度对采用最直接的喷雾方法制备的ZnO NRs的所有特性都有显著影响。在不同生长温度下,ZnO纳米颗粒的平均直径(尺寸)和平均晶粒尺寸(002)分别为(47.89 ~ 51.29)nm和(44.128 ~ 52.565)nm。随着生长温度的升高,六方纤锌矿平面是ZnO纳米粒子取向的最佳方向。随着生长温度的升高,平均吸光度也随之增大。光学分析表明,直接Eg。ZnO NRs在(3.182 ~ 3.250)eV范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
35
审稿时长
6 weeks
期刊最新文献
PROPAGATION AND CALLUS REGENERATION OF POTATO (SOLANUM TUBEROSUM L.) CULTIVAR ‘DESIREE’ UNDER SALT STRESS CONDITIONS THE PREDICTION OF HEART DISEASE USING MACHINE LEARNING ALGORITHMS PHYLOGENETIC STUDY OF TEN SPECIES FROM CENTAUREA (ASTERACEAE) IN DUHOK CITY, KURDISTAN REGION-IRAQ ENHANCING KURDISH SIGN LANGUAGE RECOGNITION THROUGH RANDOM FOREST CLASSIFIER AND NOISE REDUCTION VIA SINGULAR VALUE DECOMPOSITION (SVD) QUANTIFYING THE IMPACT OF RUNNING CADENCE ON BIOMECHANICS, PERFORMANCE, AND INJURY RISK: A PHYSICS-BASED ANALYSIS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1