Jinsheng Sun , Zhuoyang Xiu , Li Li , Kaihe Lv , Xianfa Zhang , Zonglun Wang , Zhiwen Dai , Zhe Xu , Ning Huang , Jingping Liu
{"title":"Application status and prospect of ionic liquids in oilfield chemistry","authors":"Jinsheng Sun , Zhuoyang Xiu , Li Li , Kaihe Lv , Xianfa Zhang , Zonglun Wang , Zhiwen Dai , Zhe Xu , Ning Huang , Jingping Liu","doi":"10.1016/j.petlm.2023.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>The ionic liquid, as a new treatment agent, has been increasingly applied in oil fields due to its strong temperature resistance, good solubility and high surface activity. In this paper, we systematically discuss the action mechanism and application effect of ionic liquids in oilfield chemistry. Ionic liquids can inhibit shale hydration expansion and reduce fluid loss through adsorption and intercalation, inhibit the formation of natural gas hydrate through imidazole five-membered ring structure as a space barrier, reduce viscosity of heavy oil by breaking chemical bonds of heavy oil macromolecules and charge transfer, improve oil displacement efficiency by forming ions pairs with carboxyl groups in crude oil, demulsify by forming channels between dispersed water droplets, acidify the formation by reacting with water to produce acid, interacts with organic material through weak hydrogen bonds and extracts it from oilfield wastewater, desulphurize by inserting sulfide molecules into the “stack” structure and form liquid inclusion complex, inhibit corrosion by forming a protective film on the metal surface. Based on the above aspects, the development direction of ionic liquids is proposed. The application of ionic liquids in oilfield chemistry is still in its infancy. It is urgent to fully explore the application performance of ionic liquids in oilfield chemistry, which also provides theoretical and technical supports for efficient reservoir development.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 1","pages":"Pages 11-18"},"PeriodicalIF":4.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405656123000524/pdfft?md5=72c03ac695917198eaafa4282daf01e4&pid=1-s2.0-S2405656123000524-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405656123000524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The ionic liquid, as a new treatment agent, has been increasingly applied in oil fields due to its strong temperature resistance, good solubility and high surface activity. In this paper, we systematically discuss the action mechanism and application effect of ionic liquids in oilfield chemistry. Ionic liquids can inhibit shale hydration expansion and reduce fluid loss through adsorption and intercalation, inhibit the formation of natural gas hydrate through imidazole five-membered ring structure as a space barrier, reduce viscosity of heavy oil by breaking chemical bonds of heavy oil macromolecules and charge transfer, improve oil displacement efficiency by forming ions pairs with carboxyl groups in crude oil, demulsify by forming channels between dispersed water droplets, acidify the formation by reacting with water to produce acid, interacts with organic material through weak hydrogen bonds and extracts it from oilfield wastewater, desulphurize by inserting sulfide molecules into the “stack” structure and form liquid inclusion complex, inhibit corrosion by forming a protective film on the metal surface. Based on the above aspects, the development direction of ionic liquids is proposed. The application of ionic liquids in oilfield chemistry is still in its infancy. It is urgent to fully explore the application performance of ionic liquids in oilfield chemistry, which also provides theoretical and technical supports for efficient reservoir development.
期刊介绍:
Examples of appropriate topical areas that will be considered include the following: 1.comprehensive research on oil and gas reservoir (reservoir geology): -geological basis of oil and gas reservoirs -reservoir geochemistry -reservoir formation mechanism -reservoir identification methods and techniques 2.kinetics of oil and gas basins and analyses of potential oil and gas resources: -fine description factors of hydrocarbon accumulation -mechanism analysis on recovery and dynamic accumulation process -relationship between accumulation factors and the accumulation process -analysis of oil and gas potential resource 3.theories and methods for complex reservoir geophysical prospecting: -geophysical basis of deep geologic structures and background of hydrocarbon occurrence -geophysical prediction of deep and complex reservoirs -physical test analyses and numerical simulations of reservoir rocks -anisotropic medium seismic imaging theory and new technology for multiwave seismic exploration -o theories and methods for reservoir fluid geophysical identification and prediction 4.theories, methods, technology, and design for complex reservoir development: -reservoir percolation theory and application technology -field development theories and methods -theory and technology for enhancing recovery efficiency 5.working liquid for oil and gas wells and reservoir protection technology: -working chemicals and mechanics for oil and gas wells -reservoir protection technology 6.new techniques and technologies for oil and gas drilling and production: -under-balanced drilling/gas drilling -special-track well drilling -cementing and completion of oil and gas wells -engineering safety applications for oil and gas wells -new technology of fracture acidizing