Physics- Informed Machine Learning Models for Indoor Wi-Fi Access Point Placement

Dongfang Cui, Guoli Yang, Shichen Ji, Shuyang Luo, Aristeidis Seretis, C. Sarris
{"title":"Physics- Informed Machine Learning Models for Indoor Wi-Fi Access Point Placement","authors":"Dongfang Cui, Guoli Yang, Shichen Ji, Shuyang Luo, Aristeidis Seretis, C. Sarris","doi":"10.1109/APS/URSI47566.2021.9704654","DOIUrl":null,"url":null,"abstract":"One of the main challenges in optimally placing indoor Wi-Fi access points in a complex indoor environment is the estimation of the received signal strength (RSS) given different access point locations. This paper proposes a deep learning approach, a modification to the classic Deep Convolutional Generative Adversarial Network (DCGAN), to generate accurate power maps for a specific indoor geometry. It has been demonstrated that this model consistently outperforms a benchmark ray-tracing simulator in efficiency, maintaining a comparable accuracy.","PeriodicalId":6801,"journal":{"name":"2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI)","volume":"84 1","pages":"227-228"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS/URSI47566.2021.9704654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the main challenges in optimally placing indoor Wi-Fi access points in a complex indoor environment is the estimation of the received signal strength (RSS) given different access point locations. This paper proposes a deep learning approach, a modification to the classic Deep Convolutional Generative Adversarial Network (DCGAN), to generate accurate power maps for a specific indoor geometry. It has been demonstrated that this model consistently outperforms a benchmark ray-tracing simulator in efficiency, maintaining a comparable accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物理学-室内Wi-Fi接入点放置的知情机器学习模型
在复杂的室内环境中优化室内Wi-Fi接入点的主要挑战之一是在不同接入点位置下估计接收到的信号强度(RSS)。本文提出了一种深度学习方法,对经典的深度卷积生成对抗网络(DCGAN)进行了修改,以生成特定室内几何形状的精确功率图。已经证明,该模型在效率上始终优于基准光线跟踪模拟器,并保持相当的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of stub loaded transmission line matching circuit for series fed patch array A Modular Microstrip Phased-array Antenna for Low-Cost, Beam-Steerable Application Ground Surface Clutter Suppression for GPR 3D Model of Terahertz Photoconductive Antenna using COMSOL Multiphysics Novel Offset Complementary Split Ring Resonators on Narrow-wall of Waveguides for HPM Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1