{"title":"A discrete simulation-based optimization approach for multi-period redeployment in emergency medical services","authors":"Lina Aboueljinane, E. Sahin, Z. Jemai","doi":"10.1177/00375497221139870","DOIUrl":null,"url":null,"abstract":"Emergency Medical Service (EMS) managers continuously strive to improve the coverage performance, i.e., the percentage of calls responded to within a specific target time, to save lives in case of life-threatening emergencies. This goal can be achieved by dynamically adjusting the location of rescue teams during a day in response to some temporal or geographical fluctuations such as demand patterns, traffic conditions, or the number of teams on duty. This relocation is known as the multi-period redeployment problem. In this study, we propose a discrete simulation-based optimization model to adress the multi-period redeployment problem in the French EMS of the Val-de-Marne department (France), named SAMU 94. The proposed model uses an iterative method that combines the use of a mathematical model to find the optimal locations of rescue teams with the use of the SAMU 94 simulation model implemented in Arena software, to evaluate the busy fraction parameters required to solve the mathematical model. The model performance was compared with that of the simulation-based optimization software, OptQuest. The experimental results demonstrated that the iterative method could produce solutions with better coverage performance, 20 times faster than OptQuest.","PeriodicalId":49516,"journal":{"name":"Simulation-Transactions of the Society for Modeling and Simulation International","volume":"1 1","pages":"659 - 679"},"PeriodicalIF":1.3000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation-Transactions of the Society for Modeling and Simulation International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/00375497221139870","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2
Abstract
Emergency Medical Service (EMS) managers continuously strive to improve the coverage performance, i.e., the percentage of calls responded to within a specific target time, to save lives in case of life-threatening emergencies. This goal can be achieved by dynamically adjusting the location of rescue teams during a day in response to some temporal or geographical fluctuations such as demand patterns, traffic conditions, or the number of teams on duty. This relocation is known as the multi-period redeployment problem. In this study, we propose a discrete simulation-based optimization model to adress the multi-period redeployment problem in the French EMS of the Val-de-Marne department (France), named SAMU 94. The proposed model uses an iterative method that combines the use of a mathematical model to find the optimal locations of rescue teams with the use of the SAMU 94 simulation model implemented in Arena software, to evaluate the busy fraction parameters required to solve the mathematical model. The model performance was compared with that of the simulation-based optimization software, OptQuest. The experimental results demonstrated that the iterative method could produce solutions with better coverage performance, 20 times faster than OptQuest.
期刊介绍:
SIMULATION is a peer-reviewed journal, which covers subjects including the modelling and simulation of: computer networking and communications, high performance computers, real-time systems, mobile and intelligent agents, simulation software, and language design, system engineering and design, aerospace, traffic systems, microelectronics, robotics, mechatronics, and air traffic and chemistry, physics, biology, medicine, biomedicine, sociology, and cognition.