Design of a high-voltage electrostatic ultrasonic atomization nozzle and its droplet adhesion effects on aeroponically cultivated plant roots

IF 2.2 2区 农林科学 Q2 AGRICULTURAL ENGINEERING International Journal of Agricultural and Biological Engineering Pub Date : 2023-01-01 DOI:10.25165/j.ijabe.20231602.7222
Jianmin Gao, Yinan Guo, Mazhar Hussain Tunio, Xiangchao Chen, Zhijian Chen
{"title":"Design of a high-voltage electrostatic ultrasonic atomization nozzle and its droplet adhesion effects on aeroponically cultivated plant roots","authors":"Jianmin Gao, Yinan Guo, Mazhar Hussain Tunio, Xiangchao Chen, Zhijian Chen","doi":"10.25165/j.ijabe.20231602.7222","DOIUrl":null,"url":null,"abstract":": In the process of aeroponics cultivation, the atomizer is one of the most important influencing factors on the cultivation process. This study presented the design of an ultrasonic atomization nozzle using contact charging and a root droplet adhesion test rig. The purpose of this study was to reveal the relationship between the main operating parameters of the high-voltage electrostatic ultrasonic atomization nozzle and the atomization effect using droplet adhesion measurements. In this study, the ultrasonic effect of nozzle was achieved by using Laval tube, and the design of the key parameters for the high-voltage electrostatic ultrasonic atomization nozzle were inlet pressure, electrostatic voltage root core electrode material and spray distance; the droplet size variation and root adhesion patterns were obtained through experiments. The best operating parameters were analyzed by using the orthogonal test method, and the droplet deposition distribution of the root system at different scales was investigated in the atomization chamber. The test results revealed that when the root core electrode material was coppe and the nozzle working parameters were at 0.4 MPa of inlet pressure, at 1.75 m the spray distance, at 12 kV of the electrostatic voltage, the root system has the highest droplet adhesion.","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"3 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Agricultural and Biological Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.25165/j.ijabe.20231602.7222","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

: In the process of aeroponics cultivation, the atomizer is one of the most important influencing factors on the cultivation process. This study presented the design of an ultrasonic atomization nozzle using contact charging and a root droplet adhesion test rig. The purpose of this study was to reveal the relationship between the main operating parameters of the high-voltage electrostatic ultrasonic atomization nozzle and the atomization effect using droplet adhesion measurements. In this study, the ultrasonic effect of nozzle was achieved by using Laval tube, and the design of the key parameters for the high-voltage electrostatic ultrasonic atomization nozzle were inlet pressure, electrostatic voltage root core electrode material and spray distance; the droplet size variation and root adhesion patterns were obtained through experiments. The best operating parameters were analyzed by using the orthogonal test method, and the droplet deposition distribution of the root system at different scales was investigated in the atomization chamber. The test results revealed that when the root core electrode material was coppe and the nozzle working parameters were at 0.4 MPa of inlet pressure, at 1.75 m the spray distance, at 12 kV of the electrostatic voltage, the root system has the highest droplet adhesion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高压静电超声雾化喷嘴的设计及其对气耕植物根系的粘附效应
在气培栽培过程中,雾化器是影响栽培过程的重要因素之一。本文设计了一种接触式超声雾化喷嘴和根液滴黏附试验台。通过液滴黏附测量,揭示高压静电超声雾化喷嘴主要工作参数与雾化效果的关系。本研究采用拉瓦尔管实现喷嘴的超声效果,高压静电超声雾化喷嘴的关键参数设计为进口压力、静电电压根芯电极材料和喷雾距离;通过实验得到了液滴大小变化规律和根系粘附规律。采用正交试验法对最佳操作参数进行了分析,并对雾化室内不同尺度下根系液滴沉积分布进行了研究。试验结果表明,当根芯电极材料为铜,喷嘴工作参数为0.4 MPa进口压力、1.75 m喷雾距离、12 kV静电电压时,根芯电极的液滴粘附力最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
12.50%
发文量
88
审稿时长
24 weeks
期刊介绍: International Journal of Agricultural and Biological Engineering (IJABE, https://www.ijabe.org) is a peer reviewed open access international journal. IJABE, started in 2008, is a joint publication co-sponsored by US-based Association of Agricultural, Biological and Food Engineers (AOCABFE) and China-based Chinese Society of Agricultural Engineering (CSAE). The ISSN 1934-6344 and eISSN 1934-6352 numbers for both print and online IJABE have been registered in US. Now, Int. J. Agric. & Biol. Eng (IJABE) is published in both online and print version by Chinese Academy of Agricultural Engineering.
期刊最新文献
Effects of spray adjuvants and operation modes on droplet deposition and elm aphid control using an unmanned aerial vehicle Comprehensive evaluation of the optimal rates of irrigation and potassium application for strawberry Design and test of the bilateral throwing soil-covering device for straw mulching machine in orchards Detection of the foreign object positions in agricultural soils using Mask-RCNN Separation and mechanical properties of residual film and soil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1