A deep learning based interactive sketching system for fashion images design

Yao Li, Xianggang Yu, Xiaoguang Han, Nianjuan Jiang, K. Jia, Jiangbo Lu
{"title":"A deep learning based interactive sketching system for fashion images design","authors":"Yao Li, Xianggang Yu, Xiaoguang Han, Nianjuan Jiang, K. Jia, Jiangbo Lu","doi":"10.2312/PG.20201224","DOIUrl":null,"url":null,"abstract":"In this work, we propose an interactive system to design diverse high-quality garment images from fashion sketches and the texture information. The major challenge behind this system is to generate high-quality and detailed texture according to the user-provided texture information. Prior works mainly use the texture patch representation and try to map a small texture patch to a whole garment image, hence unable to generate high-quality details. In contrast, inspired by intrinsic image decomposition, we decompose this task into texture synthesis and shading enhancement. In particular, we propose a novel bi-colored edge texture representation to synthesize textured garment images and a shading enhancer to render shading based on the grayscale edges. The bi-colored edge representation provides simple but effective texture cues and color constraints, so that the details can be better reconstructed. Moreover, with the rendered shading, the synthesized garment image becomes more vivid.","PeriodicalId":88304,"journal":{"name":"Proceedings. Pacific Conference on Computer Graphics and Applications","volume":"125 1","pages":"13-18"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Pacific Conference on Computer Graphics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/PG.20201224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this work, we propose an interactive system to design diverse high-quality garment images from fashion sketches and the texture information. The major challenge behind this system is to generate high-quality and detailed texture according to the user-provided texture information. Prior works mainly use the texture patch representation and try to map a small texture patch to a whole garment image, hence unable to generate high-quality details. In contrast, inspired by intrinsic image decomposition, we decompose this task into texture synthesis and shading enhancement. In particular, we propose a novel bi-colored edge texture representation to synthesize textured garment images and a shading enhancer to render shading based on the grayscale edges. The bi-colored edge representation provides simple but effective texture cues and color constraints, so that the details can be better reconstructed. Moreover, with the rendered shading, the synthesized garment image becomes more vivid.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的时尚图像设计交互素描系统
在这项工作中,我们提出了一个交互系统,从时装草图和纹理信息中设计出各种高质量的服装图像。该系统面临的主要挑战是根据用户提供的纹理信息生成高质量和详细的纹理。以往的作品主要使用纹理补丁表示,试图将一个小的纹理补丁映射到整幅服装图像,因此无法生成高质量的细节。相反,受图像固有分解的启发,我们将该任务分解为纹理合成和阴影增强。特别地,我们提出了一种新的双色边缘纹理表示来合成纹理服装图像,并提出了一种基于灰度边缘的阴影增强器来渲染阴影。双色边缘表示提供了简单而有效的纹理线索和颜色约束,从而可以更好地重建细节。此外,通过渲染阴影,合成的服装图像更加逼真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cloud-Assisted Hybrid Rendering for Thin-Client Games and VR Applications Interactive Deformable Image Registration with Dual Cursor DFGA: Digital Human Faces Generation and Animation from the RGB Video using Modern Deep Learning Technology Aesthetic Enhancement via Color Area and Location Awareness Learning a Style Space for Interactive Line Drawing Synthesis from Animated 3D Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1