Identification of the Flip Folder Folding Machine Using Artificial Neuro Network Method with NARX (Nonlinear Auto Regressive Exogenous) Structure

Y. A. Prabowo, W. Pambudi, I. R. Imaduddin
{"title":"Identification of the Flip Folder Folding Machine Using Artificial Neuro Network Method with NARX (Nonlinear Auto Regressive Exogenous) Structure","authors":"Y. A. Prabowo, W. Pambudi, I. R. Imaduddin","doi":"10.25139/inform.v0i1.2743","DOIUrl":null,"url":null,"abstract":"Folding machine is a tool that is needed in the small and medium scale laundry industry that has a goal for the efficiency of production time. The flip folder is the main component of this tool, which functions to fold the clothes by moving to form a certain deflection angle where the movement process is controlled by the controller. The system modeling process is the first step to study the characteristics of the system. In a dynamic system, the form of linear modeling is approved difficult to obtain a model that represents the actual physical model. Selecting the structure of the NARX (Nonlinear Autoregressive eXogenous) model was chosen to obtain the dynamic nature of the system. An estimation method to obtain parameter values from the system used Artificial Neural Networks (ANN), which is a trading scheme to be able to predict the output of a system that uses input data and output. Based on the offline assessment process using measurement data obtained by the NARX ANN model on the variation of the number of layers in 30 with a value of MSE 0,38641.","PeriodicalId":52760,"journal":{"name":"Inform Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi","volume":"87 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inform Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25139/inform.v0i1.2743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Folding machine is a tool that is needed in the small and medium scale laundry industry that has a goal for the efficiency of production time. The flip folder is the main component of this tool, which functions to fold the clothes by moving to form a certain deflection angle where the movement process is controlled by the controller. The system modeling process is the first step to study the characteristics of the system. In a dynamic system, the form of linear modeling is approved difficult to obtain a model that represents the actual physical model. Selecting the structure of the NARX (Nonlinear Autoregressive eXogenous) model was chosen to obtain the dynamic nature of the system. An estimation method to obtain parameter values from the system used Artificial Neural Networks (ANN), which is a trading scheme to be able to predict the output of a system that uses input data and output. Based on the offline assessment process using measurement data obtained by the NARX ANN model on the variation of the number of layers in 30 with a value of MSE 0,38641.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于NARX(非线性自回归外生)结构的人工神经网络方法对翻页折页机的辨识
折叠机是对生产时间效率有要求的中小型洗衣行业所需要的工具。翻转夹是该工具的主要部件,它的作用是通过移动来折叠衣服,形成一定的偏转角度,运动过程由控制器控制。系统建模过程是研究系统特性的第一步。在动态系统中,线性建模的形式被认为难以获得代表实际物理模型的模型。选择非线性自回归外生模型(NARX)的结构来获得系统的动态特性。一种利用人工神经网络(ANN)从系统中获取参数值的估计方法,它是一种能够利用输入数据和输出数据预测系统输出的交易方案。基于NARX ANN模型测量数据的离线评价过程,对30年的层数变化进行了MSE为0,38641的评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
31
审稿时长
10 weeks
期刊最新文献
Blended Learning Vocationalogy Entrepreneurship Program: Analysis of Human-Computer Interaction Based on Technology Acceptance Model (TAM) Sentiment Analysis for IMDb Movie Review Using Support Vector Machine (SVM) Method Estimation of Brake Pad Wear Using Fuzzy Logic in Real Time Website Analysis and Design Using Iconix Process Method: Case Study: Kedai Lengghian Classification of Pistachio Nut Using Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1