Iron phthalocyanine coupled with nickel-iron selenide layered hydroxide derivative as dual-functional oxygen electrocatalyst for rechargeable zinc-air batteries

Guang-Lan Li, Kuang Sheng, Yu Lei, Feng Zhang, Juan Yang, Baobao Chang, Liping Zheng, Xian-you Wang
{"title":"Iron phthalocyanine coupled with nickel-iron selenide layered hydroxide derivative as dual-functional oxygen electrocatalyst for rechargeable zinc-air batteries","authors":"Guang-Lan Li, Kuang Sheng, Yu Lei, Feng Zhang, Juan Yang, Baobao Chang, Liping Zheng, Xian-you Wang","doi":"10.20517/energymater.2023.09","DOIUrl":null,"url":null,"abstract":"The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) for dual-functional non-precious metal electrocatalysts are promising alternatives for Pt/Ru-based materials in rechargeable zinc-air batteries (ZABs). However, how to achieve dual-functional oxygen electrocatalytic activity on single-component catalysts and identify the sites responsible for ORR and OER still face many challenges. Herein, an efficient and stable dual-functional electrocatalyst is fabricated by a two-step hydrothermal method with iron phthalocyanine (FePc) π-π stacking on nickel-iron selenide layered hydroxide derivatives (Se/Ni3Se4/Fe3O4). The as-prepared multi-component catalyst (named as FePc/Se@NiFe) exhibits better oxygen electrocatalytic properties than Pt/Ru-based catalysts, with a half-wave potential (E1/2) of 0.90 V and an overpotential of 10 mA cm-2 (Ej10) of 320 mV. More importantly, chronoamperometry (I-T) and accelerated durability tests (ADT) show the unordinary stability of the catalyst. Both physical characterization and experimental results verify that the Fe-N4 moieties and Ni3Se4 crystalline phase are the main active sites for ORR and OER activities, respectively. The small potential gap (ΔE = Ej10 - E1/2 = 0.622 V) represents superior dual-functional activities of the FePc/Se@NiFe catalyst. Subsequently, the ZABs assembled using FePc/Se@NiFe exhibit excellent performances. This study offers a promising design concept for promoting further development of high-performance ORR and OER electrocatalysts and their application in ZAB.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/energymater.2023.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) for dual-functional non-precious metal electrocatalysts are promising alternatives for Pt/Ru-based materials in rechargeable zinc-air batteries (ZABs). However, how to achieve dual-functional oxygen electrocatalytic activity on single-component catalysts and identify the sites responsible for ORR and OER still face many challenges. Herein, an efficient and stable dual-functional electrocatalyst is fabricated by a two-step hydrothermal method with iron phthalocyanine (FePc) π-π stacking on nickel-iron selenide layered hydroxide derivatives (Se/Ni3Se4/Fe3O4). The as-prepared multi-component catalyst (named as FePc/Se@NiFe) exhibits better oxygen electrocatalytic properties than Pt/Ru-based catalysts, with a half-wave potential (E1/2) of 0.90 V and an overpotential of 10 mA cm-2 (Ej10) of 320 mV. More importantly, chronoamperometry (I-T) and accelerated durability tests (ADT) show the unordinary stability of the catalyst. Both physical characterization and experimental results verify that the Fe-N4 moieties and Ni3Se4 crystalline phase are the main active sites for ORR and OER activities, respectively. The small potential gap (ΔE = Ej10 - E1/2 = 0.622 V) represents superior dual-functional activities of the FePc/Se@NiFe catalyst. Subsequently, the ZABs assembled using FePc/Se@NiFe exhibit excellent performances. This study offers a promising design concept for promoting further development of high-performance ORR and OER electrocatalysts and their application in ZAB.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
酞菁铁与硒化镍铁层状氢氧衍生物偶联作为可充电锌空气电池双功能氧电催化剂
双功能非贵金属电催化剂的氧还原反应(ORR)和析氧反应(OER)是铂/钌基材料在可充电锌空气电池(ZABs)中很有前途的替代品。然而,如何在单组分催化剂上实现双功能氧电催化活性,并确定ORR和OER位点仍面临诸多挑战。本文采用两步水热法制备了酞菁铁(FePc) π-π层积在硒化镍铁层状氢氧化物衍生物(Se/Ni3Se4/Fe3O4)上的高效、稳定的双功能电催化剂。制备的多组分催化剂FePc/Se@NiFe表现出比Pt/ ru基催化剂更好的氧电催化性能,其半波电位(E1/2)为0.90 V,过电位为10 mA cm-2 (Ej10)为320 mV。更重要的是,计时电流(I-T)和加速耐久性测试(ADT)显示了催化剂非同寻常的稳定性。物理表征和实验结果都证实了Fe-N4部分和Ni3Se4晶相分别是ORR和OER活性的主要活性位点。较小的电势间隙(ΔE = Ej10 - E1/2 = 0.622 V)表明FePc/Se@NiFe催化剂具有较好的双功能活性。随后,用FePc/Se@NiFe组装的ZABs表现出优异的性能。该研究为进一步开发高性能ORR和OER电催化剂及其在ZAB中的应用提供了一个有希望的设计理念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cathode materials in microbial electrosynthesis systems for carbon dioxide reduction: recent progress and perspectives Strategies towards inhibition of aluminum current collector corrosion in lithium batteries Efficient separation and selective Li recycling of spent LiFePO4 cathode Fluorine chemistry in lithium-ion and sodium-ion batteries PGM-free carbon-based catalysts for the electrocatalytic oxygen reduction reaction: active sites and activity enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1