{"title":"Applying factorization to increase the resolving ability of the parametric estimation of the power spectral density","authors":"V.A. Tikhonov, V.M. Bezruk","doi":"10.30837/rt.2023.1.212.08","DOIUrl":null,"url":null,"abstract":"We consider a possibility of the factorization of parametric spectral power density (PSM) estimation of a random process based on autoregressive linear prediction model to increase the spectrum resolution. Factorization refers to the decomposition of the multimode PSM into simpler single-mode components. Factorization makes it possible not only to decompose a complex multimode PSM into simple single-mode components, but also to analyze more accurately the low-, medium- and high-frequency components of the SPM of a random process. The main attention is paid to the study of the problem of increasing the resolving power of SPM estimation by its factorization by the Yule-Walker and Berg method.","PeriodicalId":41675,"journal":{"name":"Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia","volume":"70 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30837/rt.2023.1.212.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a possibility of the factorization of parametric spectral power density (PSM) estimation of a random process based on autoregressive linear prediction model to increase the spectrum resolution. Factorization refers to the decomposition of the multimode PSM into simpler single-mode components. Factorization makes it possible not only to decompose a complex multimode PSM into simple single-mode components, but also to analyze more accurately the low-, medium- and high-frequency components of the SPM of a random process. The main attention is paid to the study of the problem of increasing the resolving power of SPM estimation by its factorization by the Yule-Walker and Berg method.