Deep Regression Model for Videos Popularity Prediction in Mobile Edge Caching Networks

Arooj Masood, The-Vi Nguyen, Sungrae Cho
{"title":"Deep Regression Model for Videos Popularity Prediction in Mobile Edge Caching Networks","authors":"Arooj Masood, The-Vi Nguyen, Sungrae Cho","doi":"10.1109/ICOIN50884.2021.9333920","DOIUrl":null,"url":null,"abstract":"In recent years, the wide spread adoption of mobile and multimedia applications has resulted in exponentially increasing multimedia traffic, which exerts a great burden on backhaul links and mobile core networks. Mobile edge computing (MEC) alleviates the problem by enabling mobile edge devices with cache storage and allowing them to store popular multimedia contents requested by users to reduce network congestion and content delivery latency. However, to decide the multimedia contents to cache in the edge devices, the popularity of contents needs to be taken into consideration. In this paper, we propose a deep regression-based video popularity estimation for proactive video caching in MEC networks. In each time slot, an edge device, i.e., base station (BS) generates local estimates on content popularity, which are then shared by the neighboring edge devices. Then, each edge device performs popularity prediction using a deep regression technique for proactive content caching for the next time slot. Simulation results show that the proposed deep regression based method for videos popularity prediction achieves good performance and reduces latency significantly.","PeriodicalId":6741,"journal":{"name":"2021 International Conference on Information Networking (ICOIN)","volume":"47 1","pages":"291-294"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information Networking (ICOIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN50884.2021.9333920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In recent years, the wide spread adoption of mobile and multimedia applications has resulted in exponentially increasing multimedia traffic, which exerts a great burden on backhaul links and mobile core networks. Mobile edge computing (MEC) alleviates the problem by enabling mobile edge devices with cache storage and allowing them to store popular multimedia contents requested by users to reduce network congestion and content delivery latency. However, to decide the multimedia contents to cache in the edge devices, the popularity of contents needs to be taken into consideration. In this paper, we propose a deep regression-based video popularity estimation for proactive video caching in MEC networks. In each time slot, an edge device, i.e., base station (BS) generates local estimates on content popularity, which are then shared by the neighboring edge devices. Then, each edge device performs popularity prediction using a deep regression technique for proactive content caching for the next time slot. Simulation results show that the proposed deep regression based method for videos popularity prediction achieves good performance and reduces latency significantly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移动边缘缓存网络视频流行度预测的深度回归模型
近年来,随着移动和多媒体应用的广泛采用,多媒体流量呈指数级增长,给回程链路和移动核心网带来了巨大的负担。移动边缘计算(MEC)通过使移动边缘设备具有缓存存储,并允许它们存储用户请求的流行多媒体内容,以减少网络拥塞和内容交付延迟,从而缓解了这个问题。但是,在决定在边缘设备中缓存哪些多媒体内容时,需要考虑到内容的流行程度。在本文中,我们提出了一种基于深度回归的视频流行度估计,用于MEC网络中的主动视频缓存。在每个时隙中,一个边缘设备,即基站(BS)产生对内容流行度的本地估计,然后由邻近的边缘设备共享。然后,每个边缘设备使用深度回归技术对下一个时隙的主动内容缓存执行流行度预测。仿真结果表明,基于深度回归的视频流行度预测方法取得了较好的预测效果,并显著降低了延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study on the Cluster-wise Regression Model for Bead Width in the Automatic GMA Welding GDFed: Dynamic Federated Learning for Heterogenous Device Using Graph Neural Network A Solution for Recovering Network Topology with Missing Links using Sparse Modeling Real-time health monitoring system design based on optical camera communication Multimedia Contents Retrieval based on 12-Mood Vector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1