{"title":"Feature Extraction Based on Self-Supervised Learning for Remaining Useful Life Prediction","authors":"Zhenjun Yu, Ningbo Lei, Yu Mo, Xin Xu, Xiu Li, Biqing Huang","doi":"10.1115/1.4062599","DOIUrl":null,"url":null,"abstract":"\n The prediction of the remaining useful life (RUL) is of great significance to ensure the safe operation of industrial equipment and to reduce the cost of regular preventive maintenance. However, the complex operating conditions and various fault modes make it difficult to extract features containing more degradation information with existing prediction methods. We propose a self-supervised learning method based on variational automatic encoder (VAE) to extract features of data's operating conditions and fault modes. Then the clustering algorithm is applied to the extracted features to divide data from different failure modes into different categories and reduce the impact of complex working conditions on the estimation accuracy. In order to verify the effectiveness of the proposed method, we conduct experiments with different network structures on the C-MAPSS dataset, and the results verified that our method can effectively improve the feature extraction capability of the model. In addition, the experimental results further demonstrate the superiority and necessity of using hidden features for clustering rather than raw data.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":"26 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062599","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The prediction of the remaining useful life (RUL) is of great significance to ensure the safe operation of industrial equipment and to reduce the cost of regular preventive maintenance. However, the complex operating conditions and various fault modes make it difficult to extract features containing more degradation information with existing prediction methods. We propose a self-supervised learning method based on variational automatic encoder (VAE) to extract features of data's operating conditions and fault modes. Then the clustering algorithm is applied to the extracted features to divide data from different failure modes into different categories and reduce the impact of complex working conditions on the estimation accuracy. In order to verify the effectiveness of the proposed method, we conduct experiments with different network structures on the C-MAPSS dataset, and the results verified that our method can effectively improve the feature extraction capability of the model. In addition, the experimental results further demonstrate the superiority and necessity of using hidden features for clustering rather than raw data.
期刊介绍:
The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications.
Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping