CONCRETE: Improving Cross-lingual Fact-checking with Cross-lingual Retrieval

Kung-Hsiang Huang, Chengxiang Zhai, Heng Ji
{"title":"CONCRETE: Improving Cross-lingual Fact-checking with Cross-lingual Retrieval","authors":"Kung-Hsiang Huang, Chengxiang Zhai, Heng Ji","doi":"10.48550/arXiv.2209.02071","DOIUrl":null,"url":null,"abstract":"Fact-checking has gained increasing attention due to the widespread of falsified information. Most fact-checking approaches focus on claims made in English only due to the data scarcity issue in other languages. The lack of fact-checking datasets in low-resource languages calls for an effective cross-lingual transfer technique for fact-checking. Additionally, trustworthy information in different languages can be complementary and helpful in verifying facts. To this end, we present the first fact-checking framework augmented with cross-lingual retrieval that aggregates evidence retrieved from multiple languages through a cross-lingual retriever. Given the absence of cross-lingual information retrieval datasets with claim-like queries, we train the retriever with our proposed Cross-lingual Inverse Cloze Task (X-ICT), a self-supervised algorithm that creates training instances by translating the title of a passage. The goal for X-ICT is to learn cross-lingual retrieval in which the model learns to identify the passage corresponding to a given translated title. On the X-Fact dataset, our approach achieves 2.23% absolute F1 improvement in the zero-shot cross-lingual setup over prior systems. The source code and data are publicly available at https://github.com/khuangaf/CONCRETE.","PeriodicalId":91381,"journal":{"name":"Proceedings of COLING. International Conference on Computational Linguistics","volume":"64 1","pages":"1024-1035"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of COLING. International Conference on Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.02071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Fact-checking has gained increasing attention due to the widespread of falsified information. Most fact-checking approaches focus on claims made in English only due to the data scarcity issue in other languages. The lack of fact-checking datasets in low-resource languages calls for an effective cross-lingual transfer technique for fact-checking. Additionally, trustworthy information in different languages can be complementary and helpful in verifying facts. To this end, we present the first fact-checking framework augmented with cross-lingual retrieval that aggregates evidence retrieved from multiple languages through a cross-lingual retriever. Given the absence of cross-lingual information retrieval datasets with claim-like queries, we train the retriever with our proposed Cross-lingual Inverse Cloze Task (X-ICT), a self-supervised algorithm that creates training instances by translating the title of a passage. The goal for X-ICT is to learn cross-lingual retrieval in which the model learns to identify the passage corresponding to a given translated title. On the X-Fact dataset, our approach achieves 2.23% absolute F1 improvement in the zero-shot cross-lingual setup over prior systems. The source code and data are publicly available at https://github.com/khuangaf/CONCRETE.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具体:通过跨语言检索改进跨语言事实核查
由于虚假信息的广泛存在,事实核查越来越受到关注。由于其他语言的数据缺乏问题,大多数事实核查方法只关注用英语提出的主张。由于缺乏低资源语言的事实核查数据集,需要一种有效的跨语言转移技术来进行事实核查。此外,不同语言的可靠信息可以相互补充,有助于核实事实。为此,我们提出了第一个增强了跨语言检索的事实核查框架,该框架通过跨语言检索器聚合了从多种语言检索到的证据。鉴于缺乏具有类似声明查询的跨语言信息检索数据集,我们使用我们提出的跨语言逆完形任务(X-ICT)训练检索器,这是一种自监督算法,通过翻译文章标题来创建训练实例。X-ICT的目标是学习跨语言检索,其中模型学习识别与给定翻译标题对应的段落。在X-Fact数据集上,与之前的系统相比,我们的方法在零射击跨语言设置方面实现了2.23%的绝对F1改进。源代码和数据可在https://github.com/khuangaf/CONCRETE上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Hierarchical Reasoning Chains by Linking Discourse Units and Key Phrases for Reading Comprehension Event Causality Extraction with Event Argument Correlations BERT-Flow-VAE: A Weakly-supervised Model for Multi-Label Text Classification TestAug: A Framework for Augmenting Capability-based NLP Tests Multilingual Word Sense Disambiguation with Unified Sense Representation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1