Hyunwook Park, J. Tallant, Xianli Zhang, J. Noble, D. Guan, N. Dao, K. Overstreet
{"title":"171Yb+ Microwave Clock for Military and Commercial Applications","authors":"Hyunwook Park, J. Tallant, Xianli Zhang, J. Noble, D. Guan, N. Dao, K. Overstreet","doi":"10.1109/IFCS-ISAF41089.2020.9234816","DOIUrl":null,"url":null,"abstract":"Ion traps are a rugged, proven technology that supports high-performance and manufacturable time keeping solutions. Our approach to this implementation is based on the 12.6 GHz hyperfine transition of 171Yb+ ions confined in a linear Paul trap. We report an instability of $6\\times 10^{-13} \\tau^{-1/2}$ up to averaging time $\\tau=100\\ \\mathrm{s}$ in the presence of buffer gas, which is a 40% improvement from our previous report. The ion trap is implemented in a 2U-compatible enclosure, which is characterized by ion storage times >95 days and Allan deviation down to $4 \\times 10^{-15}$ at $\\tau=2\\times 10^{5}\\ \\mathrm{s}$.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"31 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ion traps are a rugged, proven technology that supports high-performance and manufacturable time keeping solutions. Our approach to this implementation is based on the 12.6 GHz hyperfine transition of 171Yb+ ions confined in a linear Paul trap. We report an instability of $6\times 10^{-13} \tau^{-1/2}$ up to averaging time $\tau=100\ \mathrm{s}$ in the presence of buffer gas, which is a 40% improvement from our previous report. The ion trap is implemented in a 2U-compatible enclosure, which is characterized by ion storage times >95 days and Allan deviation down to $4 \times 10^{-15}$ at $\tau=2\times 10^{5}\ \mathrm{s}$.