Using Image Processing to Automatically Measure Pearl Oyster Size for Selective Breeding

Adrian Lapico, M. Sankupellay, Louis Cianciullo, Trina S. Myers, D. Konovalov, D. Jerry, P. Toole, David B. Jones, K. Zenger
{"title":"Using Image Processing to Automatically Measure Pearl Oyster Size for Selective Breeding","authors":"Adrian Lapico, M. Sankupellay, Louis Cianciullo, Trina S. Myers, D. Konovalov, D. Jerry, P. Toole, David B. Jones, K. Zenger","doi":"10.1109/DICTA47822.2019.8945902","DOIUrl":null,"url":null,"abstract":"The growth rate is a genetic trait that is often recorded in pearl oyster farming for use in selective breeding programs. By tracking the growth rate of a pearl oyster, farmers can make better decisions on which oysters to breed or manage in order to produce healthier offspring and higher quality pearls. However, the current practice of measurement by hand results in measurement inaccuracies, slow processing, and unnecessary employee costs. To rectify this, we propose automating the workflow via computer vision techniques, which can be used to capture images of pearl oysters and process the images to obtain the absolute measurements of each oyster. Specifically, we utilise and compare a set of edge detection algorithms to produce an image-processing algorithm that automatically segments an image containing multiple oysters and returns the height and width of the oyster shell. Our final algorithm was tested on images containing 2523 oysters (Pinctada maxima) captured on farming boats in Indonesia. This algorithm achieved reliability (of identifying at least one required oyster measurement correctly) equal to 92.1%.","PeriodicalId":6696,"journal":{"name":"2019 Digital Image Computing: Techniques and Applications (DICTA)","volume":"58 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA47822.2019.8945902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The growth rate is a genetic trait that is often recorded in pearl oyster farming for use in selective breeding programs. By tracking the growth rate of a pearl oyster, farmers can make better decisions on which oysters to breed or manage in order to produce healthier offspring and higher quality pearls. However, the current practice of measurement by hand results in measurement inaccuracies, slow processing, and unnecessary employee costs. To rectify this, we propose automating the workflow via computer vision techniques, which can be used to capture images of pearl oysters and process the images to obtain the absolute measurements of each oyster. Specifically, we utilise and compare a set of edge detection algorithms to produce an image-processing algorithm that automatically segments an image containing multiple oysters and returns the height and width of the oyster shell. Our final algorithm was tested on images containing 2523 oysters (Pinctada maxima) captured on farming boats in Indonesia. This algorithm achieved reliability (of identifying at least one required oyster measurement correctly) equal to 92.1%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图像处理的珍珠牡蛎尺寸自动测量技术
生长速度是一种遗传性状,通常记录在珍珠牡蛎养殖中,用于选择性育种计划。通过跟踪珍珠牡蛎的生长速度,农民可以更好地决定饲养或管理哪种牡蛎,以生产更健康的后代和更高质量的珍珠。然而,目前手工测量的做法导致测量不准确、处理缓慢和不必要的员工成本。为了纠正这一点,我们提出了通过计算机视觉技术自动化工作流程,该技术可用于捕获珍珠牡蛎的图像并对图像进行处理以获得每个牡蛎的绝对测量值。具体来说,我们利用并比较了一组边缘检测算法来生成一种图像处理算法,该算法可以自动分割包含多个牡蛎的图像,并返回牡蛎壳的高度和宽度。我们的最终算法在印度尼西亚养殖船上捕获的含有2523只牡蛎(Pinctada maxima)的图像上进行了测试。该算法的可靠度(正确识别至少一个所需牡蛎测量值)为92.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced Micro Target Detection through Local Motion Feedback in Biologically Inspired Algorithms Hyperspectral Image Analysis for Writer Identification using Deep Learning Robust Image Watermarking Framework Powered by Convolutional Encoder-Decoder Network Single View 3D Point Cloud Reconstruction using Novel View Synthesis and Self-Supervised Depth Estimation Semantic Segmentation under Severe Imaging Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1