{"title":"On Frequency / Time Invariance of Certain Temporal and Complex Transfer Functions for the 1d Interfacial Monochromatic Neutron Density Wave","authors":"N. Haidar","doi":"10.1115/1.4063291","DOIUrl":null,"url":null,"abstract":"\n Optimization of dynamical multibeam neutron cancer therapy has recently been shown to be possible via employment of the beam frequencies of neutron waves as a control variable. The concepts of transfer functions, addressed in this paper, can be essential ingredients of such optimization. Accordingly, we study the dynamics of a 1D monochromatic neutron density wave generated by time modulation of a boundary neutron current. It is demonstrated that a certain temporal transfer function of both parabolic (diffusion) and low frequency hyperbolic (P?1 transport) interfacial neutron density wave happens to be frequency non-invariant with a vibrating boundary neutron current. It is proved that, only at high frequencies, both parabolic and hyperbolic interfacial neutron waves turn out to have a fully frequency-invariant and time-invariant temporal transfer function relative to such a vibrating neutron beam at the boundary. The frequency response of an associated complex transfer function is studied and demonstrated to change behavior, from a lag compensator to a fixed gain amplifier, with changing the frequency, neutron absorption and employed theory for neutron diffusion. A highlight of this paper is its illustration that mere continuity of these transfer functions can be a reflection of the correctness of the transport theory employed for modeling the neutron density waves.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":"26 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Engineering and Radiation Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Optimization of dynamical multibeam neutron cancer therapy has recently been shown to be possible via employment of the beam frequencies of neutron waves as a control variable. The concepts of transfer functions, addressed in this paper, can be essential ingredients of such optimization. Accordingly, we study the dynamics of a 1D monochromatic neutron density wave generated by time modulation of a boundary neutron current. It is demonstrated that a certain temporal transfer function of both parabolic (diffusion) and low frequency hyperbolic (P?1 transport) interfacial neutron density wave happens to be frequency non-invariant with a vibrating boundary neutron current. It is proved that, only at high frequencies, both parabolic and hyperbolic interfacial neutron waves turn out to have a fully frequency-invariant and time-invariant temporal transfer function relative to such a vibrating neutron beam at the boundary. The frequency response of an associated complex transfer function is studied and demonstrated to change behavior, from a lag compensator to a fixed gain amplifier, with changing the frequency, neutron absorption and employed theory for neutron diffusion. A highlight of this paper is its illustration that mere continuity of these transfer functions can be a reflection of the correctness of the transport theory employed for modeling the neutron density waves.
期刊介绍:
The Journal of Nuclear Engineering and Radiation Science is ASME’s latest title within the energy sector. The publication is for specialists in the nuclear/power engineering areas of industry, academia, and government.