{"title":"Rectangular Concentration-Based Nanomachine Localization in Molecular Communication Networks With Unknown Emission Time","authors":"Ajit Kumar;Akarsh Yadav;Sudhir Kumar","doi":"10.1109/TMBMC.2023.3302798","DOIUrl":null,"url":null,"abstract":"Localization of nanomachines is essential for optimal functionality, including optimizing transmission rates and detecting irregular cells. The sampling concentration received by the nanomachines can be used for this purpose. The localization based on received sampling concentration requires the emission time of molecules to improve the accuracy and establish synchronization among the nanomachine. In this paper, we derive the maximum likelihood estimation for localizing nanomachine in two scenarios, that is, known and unknown emission times. In contrast to the existing model, the proposed model considers a generic input (rectangular) concentration that can accommodate both non-zero emission duration and instantaneous emission, making it more practical for many applications. The model also considers multiple symbols and challenges like inter-symbol interference. Even with the rectangular input concentration, the proposed model achieves comparable individual localization performance to the impulse concentration. Additionally, the proposed model allows for joint estimation of location and emission time using correlated observations, making it a practical and generic solution for applications.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10210701/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Localization of nanomachines is essential for optimal functionality, including optimizing transmission rates and detecting irregular cells. The sampling concentration received by the nanomachines can be used for this purpose. The localization based on received sampling concentration requires the emission time of molecules to improve the accuracy and establish synchronization among the nanomachine. In this paper, we derive the maximum likelihood estimation for localizing nanomachine in two scenarios, that is, known and unknown emission times. In contrast to the existing model, the proposed model considers a generic input (rectangular) concentration that can accommodate both non-zero emission duration and instantaneous emission, making it more practical for many applications. The model also considers multiple symbols and challenges like inter-symbol interference. Even with the rectangular input concentration, the proposed model achieves comparable individual localization performance to the impulse concentration. Additionally, the proposed model allows for joint estimation of location and emission time using correlated observations, making it a practical and generic solution for applications.
期刊介绍:
As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.